Aeroacoustic measurements on a NACA 0012 applying the Coherent Particle Velocity method

Aeroacoustic measurements on a NACA 0012 applying the Coherent Particle Velocity method Aeroacoustic measurements on two NACA 0012 airfoil sections with different chord length and sharp trailing edge were conducted at the Laminar Wind Tunnel (LWT) of the University of Stuttgart. The LWT is a closed test section wind tunnel with a very low turbulence level and an acoustically optimized diffusor section allowing for high-quality aerodynamic as well as aeroacoustic measurements. Trailing edge noise measurements were performed using the Coherent Particle Velocity (CPV) method, which is based on a cross-spectral analysis of two hot-wire sensor signals placed on the suction and the pressure side of the airfoil trailing edge, respectively. At high angles of attack, the cross-spectral analysis of the two sensor signals used for the measurement of the trailing edge noise can be prone to a disturbing influence of hydrodynamic fluctuations. Hence, continuous shifts in the phasing of the cross-correlation are observed mainly for low sensor distances to the trailing edge. The quantitative evaluation of the trailing edge noise predominately in the low frequency range is, therefore, considerably disturbed. A new approach is proposed, which allows for the correction of the cross-correlation function based on the averaged single wire auto-spectrum. The results are compared to measurements with increased sensor distance and show good agreement. In the following, trailing edge noise measurements were performed on a NACA 0012 airfoil in a wide range of angles of attack (α = 0°–8°) and free-stream velocities ( $$u_{\infty} = 30{-}70\,{\hbox{m/s}}$$ u ∞ = 30 - 70 m/s ). The tripped flow cases exhibit a very good consistency for the scaling of the 1/3 octave spectra based on outer variables. Moreover, a common intersection point of the sound pressure level was observed for trailing edge noise spectra measured at constant free-stream velocity and different angles of attack. In cases without boundary layer tripping, the presence of an acoustic feedback loop was observed and linked to the presence of a laminar separation bubble on the pressure side in the vicinity of the trailing edge. Finally, a comparison of the aeroacoustic measurements based on the CPV method showed reasonably good agreement with published data obtained with both a microphone array and the Coherent Output Power method in open-test section facilities. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Aeroacoustic measurements on a NACA 0012 applying the Coherent Particle Velocity method

Loading next page...
 
/lp/springer_journal/aeroacoustic-measurements-on-a-naca-0012-applying-the-coherent-UKSX1udCqW
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-013-1556-9
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial