Advection of passive scalars induced by a bay-trapped nonstationary vortex

Advection of passive scalars induced by a bay-trapped nonstationary vortex A simple model of fluid particle advection induced by the interaction of a point vortex and incident plane flow occurring near a curved boundary is analyzed. The use of the curved boundary in this case is aimed at mimicking the geometry of an isolated bay of a circular shape. An introduction of such a boundary to the model results in the appearance of retention zones, where the vortex can be permanently trapped being either stationary or periodically oscillating. When stationary, it induces a steady velocity field that in turn ensures regular advection of nearby fluid particles. When the vortex oscillates periodically, the induced velocity field turns unsteady leading to the manifestation of chaotic advection of fluid particles. We show that the size of the fluid region engaged into chaotic advection increases almost monotonically with the increased magnitude of the vortex oscillations provided the magnitude remains relatively small. The monotonicity is accounted for the fact that the frequency of the vortex oscillations incommensurable with the proper frequency of fluid particle rotations in the steady state. Another point of interest is that it is demonstrated that bounded regions, in which the vortex may be trapped, can appear even at a significant distance from the bay. Making use of a Lagrangian indicator, examples of fluid particle advection induced by the periodic motion of the vortex inside the bay are adduced. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ocean Dynamics Springer Journals

Advection of passive scalars induced by a bay-trapped nonstationary vortex

Loading next page...
 
/lp/springer_journal/advection-of-passive-scalars-induced-by-a-bay-trapped-nonstationary-fBkfaJXMI1
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Earth Sciences; Oceanography; Geophysics/Geodesy; Atmospheric Sciences; Fluid- and Aerodynamics; Monitoring/Environmental Analysis
ISSN
1616-7341
eISSN
1616-7228
D.O.I.
10.1007/s10236-018-1140-1
Publisher site
See Article on Publisher Site

Abstract

A simple model of fluid particle advection induced by the interaction of a point vortex and incident plane flow occurring near a curved boundary is analyzed. The use of the curved boundary in this case is aimed at mimicking the geometry of an isolated bay of a circular shape. An introduction of such a boundary to the model results in the appearance of retention zones, where the vortex can be permanently trapped being either stationary or periodically oscillating. When stationary, it induces a steady velocity field that in turn ensures regular advection of nearby fluid particles. When the vortex oscillates periodically, the induced velocity field turns unsteady leading to the manifestation of chaotic advection of fluid particles. We show that the size of the fluid region engaged into chaotic advection increases almost monotonically with the increased magnitude of the vortex oscillations provided the magnitude remains relatively small. The monotonicity is accounted for the fact that the frequency of the vortex oscillations incommensurable with the proper frequency of fluid particle rotations in the steady state. Another point of interest is that it is demonstrated that bounded regions, in which the vortex may be trapped, can appear even at a significant distance from the bay. Making use of a Lagrangian indicator, examples of fluid particle advection induced by the periodic motion of the vortex inside the bay are adduced.

Journal

Ocean DynamicsSpringer Journals

Published: Feb 20, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off