Advantageous swirling flow in 45° end-to-side anastomosis

Advantageous swirling flow in 45° end-to-side anastomosis The effects of swirling flow on the flow field in 45° end-to-side anastomosis are experimentally investigated using a particle image velocimetry technique to reveal fluid dynamic advantages of swirling flow in the vascular graft. Non-swirling Poiseuille inlet flow unnecessarily induces pathological hemodynamic features, such as high wall shear stress (WSS) at the ‘bed’ side and large flow separation at the ‘toe’ side. The introduction of swirling flow is found to equalize the asymmetric WSS distribution and reduces the peak magnitude of WSS. In particular, the intermediate swirling intensity of S = 0.45 induces the most uniform axial velocity and WSS distributions compared with weaker or stronger swirling flows, which addresses the importance of proper selection of swirling intensity in the vascular graft to obtain optimum flow fields at the host vessel. In addition, swirling flow reduces the size of flow separation because it disturbs the formation of Dean-type vortices in secondary flow and inhibits secondary flow collision. The beneficial fluid dynamic features of swirling flow obtained in this study are helpful for designing better vascular graft suppressing pathological hemodynamic features in the recipient host vessel. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Advantageous swirling flow in 45° end-to-side anastomosis

Loading next page...
 
/lp/springer_journal/advantageous-swirling-flow-in-45-end-to-side-anastomosis-l4hLeOK116
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-014-1861-y
Publisher site
See Article on Publisher Site

Abstract

The effects of swirling flow on the flow field in 45° end-to-side anastomosis are experimentally investigated using a particle image velocimetry technique to reveal fluid dynamic advantages of swirling flow in the vascular graft. Non-swirling Poiseuille inlet flow unnecessarily induces pathological hemodynamic features, such as high wall shear stress (WSS) at the ‘bed’ side and large flow separation at the ‘toe’ side. The introduction of swirling flow is found to equalize the asymmetric WSS distribution and reduces the peak magnitude of WSS. In particular, the intermediate swirling intensity of S = 0.45 induces the most uniform axial velocity and WSS distributions compared with weaker or stronger swirling flows, which addresses the importance of proper selection of swirling intensity in the vascular graft to obtain optimum flow fields at the host vessel. In addition, swirling flow reduces the size of flow separation because it disturbs the formation of Dean-type vortices in secondary flow and inhibits secondary flow collision. The beneficial fluid dynamic features of swirling flow obtained in this study are helpful for designing better vascular graft suppressing pathological hemodynamic features in the recipient host vessel.

Journal

Experiments in FluidsSpringer Journals

Published: Nov 19, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off