Advantage of multispectral imaging with sub-centimeter resolution in precision agriculture: generalization of training for supervised classification

Advantage of multispectral imaging with sub-centimeter resolution in precision agriculture:... Nowadays it is known how to resolve many questions through satellite imagery such as Landsat 8 and the like, both from the theoretical point of view, i.e. research, as well as from the practical standpoint, e.g. commercial applications. This study evaluated the possibility of generalizing the training for supervised classification of multispectral images with sub-centimeter resolution. Images were taken under uncontrolled conditions of lighting and sun-target-sensor geometry and in the presence of normal interference in the agricultural environment. The images were obtained by the DuncanTech MS3100 camera (Auburn, CA, USA), a multispectral camera (green, red and near infra-red) mounted on a mobile ground platform and transformed into reflectance. For each element present (leaves, stems, spikes, soil, shadows, spectral references and sampling implements), a representative area was delimited in each image. These regions of interest were used, first, to quantify the separability of the classes. The next step was to define groups for cross-validation within these regions of interest; ten-folds were defined randomly with the constraint of a uniform distribution of classes. These folds were used in training and evaluation of the supervised classification using spectral angle mapper, maximum likelihood and decision trees. Spectral angle mapper correctly classified 49.2 % of cases, the maximum likelihood achieved a success rate of 86.8 % and the decision tree correctly classified 99.5 % of the spectral signatures. These results prove that multispectral images taken under uncontrolled conditions can be successfully classified by a generalized model that takes advantage of the higher spatial resolution. This opens a new line in which those pixels that do not correspond to vegetation, which bias the estimates of the crop parameters and complicate the recognition of objects, could be automatically masked. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Advantage of multispectral imaging with sub-centimeter resolution in precision agriculture: generalization of training for supervised classification

Loading next page...
 
/lp/springer_journal/advantage-of-multispectral-imaging-with-sub-centimeter-resolution-in-xMnrxloY8u
Publisher
Springer US
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-016-9478-1
Publisher site
See Article on Publisher Site

Abstract

Nowadays it is known how to resolve many questions through satellite imagery such as Landsat 8 and the like, both from the theoretical point of view, i.e. research, as well as from the practical standpoint, e.g. commercial applications. This study evaluated the possibility of generalizing the training for supervised classification of multispectral images with sub-centimeter resolution. Images were taken under uncontrolled conditions of lighting and sun-target-sensor geometry and in the presence of normal interference in the agricultural environment. The images were obtained by the DuncanTech MS3100 camera (Auburn, CA, USA), a multispectral camera (green, red and near infra-red) mounted on a mobile ground platform and transformed into reflectance. For each element present (leaves, stems, spikes, soil, shadows, spectral references and sampling implements), a representative area was delimited in each image. These regions of interest were used, first, to quantify the separability of the classes. The next step was to define groups for cross-validation within these regions of interest; ten-folds were defined randomly with the constraint of a uniform distribution of classes. These folds were used in training and evaluation of the supervised classification using spectral angle mapper, maximum likelihood and decision trees. Spectral angle mapper correctly classified 49.2 % of cases, the maximum likelihood achieved a success rate of 86.8 % and the decision tree correctly classified 99.5 % of the spectral signatures. These results prove that multispectral images taken under uncontrolled conditions can be successfully classified by a generalized model that takes advantage of the higher spatial resolution. This opens a new line in which those pixels that do not correspond to vegetation, which bias the estimates of the crop parameters and complicate the recognition of objects, could be automatically masked.

Journal

Precision AgricultureSpringer Journals

Published: Oct 27, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off