Advancing chemical risk assessment decision-making with population variability data: challenges and opportunities

Advancing chemical risk assessment decision-making with population variability data: challenges... Characterizing population variability, including identifying susceptible populations and quantifying their increased susceptibility, is an important aspect of chemical risk assessment, but one that is challenging with traditional experimental models and risk assessment methods. New models and methods to address population variability can be used to advance the human health assessments of chemicals in three key areas. First, with respect to hazard identification, evaluating toxicity using population-based in vitro and in vivo models can potentially reduce both false positive and false negative signals. Second, with respect to evaluating mechanisms of toxicity, enhanced ability to do genetic mapping using these models allows for the identification of key biological pathways and mechanisms that may be involved in toxicity and/or susceptibility. Third, with respect to dose–response assessment, population-based toxicity data can serve as a surrogate for human variability, and thus be used to quantitatively estimate the degree of human toxicokinetic/toxicodynamic variability and thereby increase confidence in setting health-protective exposure limits. A number of case studies have been published that demonstrate the potential opportunities for improving risk assessment and decision-making, and include studies using Collaborative Cross and Diversity Outbred mice, as well as populations of human cell lines from the 1000 Genomes project. Key challenges include the need to apply more sophisticated computational and statistical models analyzing population-based toxicity data, and the need to integrate these more complex analyses into risk assessments and decision-making. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Advancing chemical risk assessment decision-making with population variability data: challenges and opportunities

Loading next page...
 
/lp/springer_journal/advancing-chemical-risk-assessment-decision-making-with-population-upZWpnwmnc
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Life Sciences; Cell Biology; Animal Genetics and Genomics; Human Genetics
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-017-9731-6
Publisher site
See Article on Publisher Site

Abstract

Characterizing population variability, including identifying susceptible populations and quantifying their increased susceptibility, is an important aspect of chemical risk assessment, but one that is challenging with traditional experimental models and risk assessment methods. New models and methods to address population variability can be used to advance the human health assessments of chemicals in three key areas. First, with respect to hazard identification, evaluating toxicity using population-based in vitro and in vivo models can potentially reduce both false positive and false negative signals. Second, with respect to evaluating mechanisms of toxicity, enhanced ability to do genetic mapping using these models allows for the identification of key biological pathways and mechanisms that may be involved in toxicity and/or susceptibility. Third, with respect to dose–response assessment, population-based toxicity data can serve as a surrogate for human variability, and thus be used to quantitatively estimate the degree of human toxicokinetic/toxicodynamic variability and thereby increase confidence in setting health-protective exposure limits. A number of case studies have been published that demonstrate the potential opportunities for improving risk assessment and decision-making, and include studies using Collaborative Cross and Diversity Outbred mice, as well as populations of human cell lines from the 1000 Genomes project. Key challenges include the need to apply more sophisticated computational and statistical models analyzing population-based toxicity data, and the need to integrate these more complex analyses into risk assessments and decision-making.

Journal

Mammalian GenomeSpringer Journals

Published: Jan 3, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off