Advances in iterative multigrid PIV image processing

Advances in iterative multigrid PIV image processing An image-processing technique is proposed, which performs iterative interrogation of particle image velocimetry (PIV) recordings. The method is based on cross-correlation, enhancing the matching performances by means of a relative transformation between the interrogation areas. On the basis of an iterative prediction of the tracers motion, window offset and deformation are applied, accounting for the local deformation of the fluid continuum. In addition, progressive grid refinement is applied in order to maximise the spatial resolution. The performances of the method are analysed and compared with the conventional cross correlation with and without the effect of a window discrete offset. The assessment of performance through synthetic PIV images shows that a remarkable improvement can be obtained in terms of precision and dynamic range. Moreover, peak-locking effects do not affect the method in practice. The velocity gradient range accessed with the application of a relative window deformation (linear approximation) is significantly enlarged, as confirmed in the experimental results. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Advances in iterative multigrid PIV image processing

Loading next page...
 
/lp/springer_journal/advances-in-iterative-multigrid-piv-image-processing-1fBIYdMqoM
Publisher
Springer-Verlag
Copyright
Copyright © 2000 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480070007
Publisher site
See Article on Publisher Site

Abstract

An image-processing technique is proposed, which performs iterative interrogation of particle image velocimetry (PIV) recordings. The method is based on cross-correlation, enhancing the matching performances by means of a relative transformation between the interrogation areas. On the basis of an iterative prediction of the tracers motion, window offset and deformation are applied, accounting for the local deformation of the fluid continuum. In addition, progressive grid refinement is applied in order to maximise the spatial resolution. The performances of the method are analysed and compared with the conventional cross correlation with and without the effect of a window discrete offset. The assessment of performance through synthetic PIV images shows that a remarkable improvement can be obtained in terms of precision and dynamic range. Moreover, peak-locking effects do not affect the method in practice. The velocity gradient range accessed with the application of a relative window deformation (linear approximation) is significantly enlarged, as confirmed in the experimental results.

Journal

Experiments in FluidsSpringer Journals

Published: Dec 31, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off