Advances in bioprinted cell-laden hydrogels for skin tissue engineering

Advances in bioprinted cell-laden hydrogels for skin tissue engineering Bioprinting technologies are powerful additive biofabrication techniques to produce cellular constructs for skin tissue engineering owing to their unique ability to precisely pattern living and non-living materials in pre-defined spatial locations. This unique feature, combined with the computer controlled printing and medical imaging techniques, enable researchers and clinicians to generate patient specific constructs partly replicating the intricate compositional and architectural organization of the skin. Bioprinting has been used to automatically dispense hydrogels with skin cells located in prescribed sites that promote skin formation in vitro and in vivo. Current skin bioprinting approaches mostly rely on the sequential printing of fibroblasts and keratinocytes embedded within a homogeneous hydrogel. Although such approaches have already been translated to pre-clinical scenarios, they still present limitations in terms of fully replicating the cellular and extracellular matrix (ECM) heterogeneity in native skin. The success of bioprinting for skin repair strongly depends on the design of printable bioinks capable of supporting the function of printed cells and stimulating the production of new ECM components. To better mimic the human skin, novel developments in dedicated bioprinting technologies, in the design of bioinks, as well as in the printing of vascularised constructs are necessary. This paper presents an overview regarding the use of bioprinting for skin tissue engineering applications. The operating principles of bioprinting technologies are outlined along with requirements of printed skin constructs. Finally, pre-clinical results are summarized and future perspectives for the field are highlighted. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biomanufacturing Reviews Springer Journals

Advances in bioprinted cell-laden hydrogels for skin tissue engineering

Loading next page...
 
/lp/springer_journal/advances-in-bioprinted-cell-laden-hydrogels-for-skin-tissue-hpsqKyo0VT
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by Springer International Publishing AG
Subject
Engineering; Biomedical Engineering; Regenerative Medicine/Tissue Engineering; Biomaterials
ISSN
2363-507X
eISSN
2363-5088
D.O.I.
10.1007/s40898-017-0003-8
Publisher site
See Article on Publisher Site

Abstract

Bioprinting technologies are powerful additive biofabrication techniques to produce cellular constructs for skin tissue engineering owing to their unique ability to precisely pattern living and non-living materials in pre-defined spatial locations. This unique feature, combined with the computer controlled printing and medical imaging techniques, enable researchers and clinicians to generate patient specific constructs partly replicating the intricate compositional and architectural organization of the skin. Bioprinting has been used to automatically dispense hydrogels with skin cells located in prescribed sites that promote skin formation in vitro and in vivo. Current skin bioprinting approaches mostly rely on the sequential printing of fibroblasts and keratinocytes embedded within a homogeneous hydrogel. Although such approaches have already been translated to pre-clinical scenarios, they still present limitations in terms of fully replicating the cellular and extracellular matrix (ECM) heterogeneity in native skin. The success of bioprinting for skin repair strongly depends on the design of printable bioinks capable of supporting the function of printed cells and stimulating the production of new ECM components. To better mimic the human skin, novel developments in dedicated bioprinting technologies, in the design of bioinks, as well as in the printing of vascularised constructs are necessary. This paper presents an overview regarding the use of bioprinting for skin tissue engineering applications. The operating principles of bioprinting technologies are outlined along with requirements of printed skin constructs. Finally, pre-clinical results are summarized and future perspectives for the field are highlighted.

Journal

Biomanufacturing ReviewsSpringer Journals

Published: Aug 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off