Advances in bioprinted cell-laden hydrogels for skin tissue engineering

Advances in bioprinted cell-laden hydrogels for skin tissue engineering Bioprinting technologies are powerful additive biofabrication techniques to produce cellular constructs for skin tissue engineering owing to their unique ability to precisely pattern living and non-living materials in pre-defined spatial locations. This unique feature, combined with the computer controlled printing and medical imaging techniques, enable researchers and clinicians to generate patient specific constructs partly replicating the intricate compositional and architectural organization of the skin. Bioprinting has been used to automatically dispense hydrogels with skin cells located in prescribed sites that promote skin formation in vitro and in vivo. Current skin bioprinting approaches mostly rely on the sequential printing of fibroblasts and keratinocytes embedded within a homogeneous hydrogel. Although such approaches have already been translated to pre-clinical scenarios, they still present limitations in terms of fully replicating the cellular and extracellular matrix (ECM) heterogeneity in native skin. The success of bioprinting for skin repair strongly depends on the design of printable bioinks capable of supporting the function of printed cells and stimulating the production of new ECM components. To better mimic the human skin, novel developments in dedicated bioprinting technologies, in the design of bioinks, as well as in the printing of vascularised constructs are necessary. This paper presents an overview regarding the use of bioprinting for skin tissue engineering applications. The operating principles of bioprinting technologies are outlined along with requirements of printed skin constructs. Finally, pre-clinical results are summarized and future perspectives for the field are highlighted. Biomanufacturing Reviews Springer Journals

Advances in bioprinted cell-laden hydrogels for skin tissue engineering

Loading next page...
Springer International Publishing
Copyright © 2017 by Springer International Publishing AG
Engineering; Biomedical Engineering; Regenerative Medicine/Tissue Engineering; Biomaterials
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial