Adsorptive removal of ascertained and suspected endocrine disruptors from aqueous solution using plant-derived materials

Adsorptive removal of ascertained and suspected endocrine disruptors from aqueous solution using... The present study deals with the use of low-cost plant-derived materials, namely a biochar, spent coffee grounds, spent tea leaves, and a compost humic acid, for the adsorptive removal from water of two estrogens, 4-tert-octylphenol (OP) and 17-β-estradiol (E2), and two pesticides, carbaryl and fenuron, each spiked at a concentration of 1 mg L−1. Kinetics and adsorption isotherms have been performed using a batch equilibrium method to measure the sorption capacities of the adsorbents towards the four molecules. Adsorption constants were calculated using the linear, Freundlich, and Langmuir models. Kinetics data obtained evidenced a rapid adsorption of each compound onto both biochar and coffee grounds with the attainment of a steady-state equilibrium in less than 4 h. Significant differences among the adsorbents and the compounds were found regarding the model and the extent of adsorption. In general, the estrogens were adsorbed more quickly and in greater amounts than the less hydrophobic pesticides, following the order: OP > E2 > carbaryl > fenuron. The ranges of Freundlich constants obtained for OP, E2, carbaryl, and fenuron onto the sorbents were 5049–2253, 3385–206, 2491–79, and 822–24 L kg−1, respectively. The maximum values of constants were obtained for biochar, except for OP that was more adsorbed by spent coffee grounds. Adsorption kinetic data followed a pseudo-second-order model, thus indicating the occurrence of chemical interactions between the compounds and the substrates. The remarkable sorption capacities of all adsorbents towards the four molecules suggest the valuable exploitation of these materials for decontamination purposes, such as the treatment of wastewater before a feasible recycle in soil. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Adsorptive removal of ascertained and suspected endocrine disruptors from aqueous solution using plant-derived materials

Loading next page...
 
/lp/springer_journal/adsorptive-removal-of-ascertained-and-suspected-endocrine-disruptors-2BoePzOfil
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-017-9595-z
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial