Adsorptive recovery of geniposidic acid from gardenia yellow pigment extraction wastewater by anion exchange: equilibrium, thermodynamics and mechanism modeling and simulation

Adsorptive recovery of geniposidic acid from gardenia yellow pigment extraction wastewater by... For many years, the traditional process of gardenia yellow pigment extraction has produced wastewater containing significant quantities of Geniposidic acid (GSA), a substance that could be put to pharmacological uses if it could be effectively recovered. This study aimed to provide an efficient adsorption material, D08, for recycling GSA. Batch experiments showed that adsorption capacity depends on initial concentration and temperature. The maximal adsorption capacity of GSA onto an anionic exchanger reached 310 mg/g. The pK a value of GSA was determined to be 4.21. Pore diffusion coefficients (D p) of GSA for 283, 298 and 313 K were 3.274 × 10−10, 5.069 × 10−10 and 7.356 × 10−10 m2/s, respectively. Recovery efficiency of GSA was achieved to 99.81 %. In comparison with pseudo first-order and pseudo second-order equations, the PDM model demonstrated the best fit to the kinetics data of GSA adsorption. Adsorption/desorption experiments proved that D08 offers great adsorption capacity, high adsorption rate and good repeatability. In order to help us to accurately comprehend the mass transfer process, numerical simulation and post-processing to variables c(r, t) and q(r, t) were performed to clarify the adsorption process. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Adsorptive recovery of geniposidic acid from gardenia yellow pigment extraction wastewater by anion exchange: equilibrium, thermodynamics and mechanism modeling and simulation

Loading next page...
 
/lp/springer_journal/adsorptive-recovery-of-geniposidic-acid-from-gardenia-yellow-pigment-DyX6BBj8aE
Publisher
Springer Netherlands
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-016-2757-7
Publisher site
See Article on Publisher Site

Abstract

For many years, the traditional process of gardenia yellow pigment extraction has produced wastewater containing significant quantities of Geniposidic acid (GSA), a substance that could be put to pharmacological uses if it could be effectively recovered. This study aimed to provide an efficient adsorption material, D08, for recycling GSA. Batch experiments showed that adsorption capacity depends on initial concentration and temperature. The maximal adsorption capacity of GSA onto an anionic exchanger reached 310 mg/g. The pK a value of GSA was determined to be 4.21. Pore diffusion coefficients (D p) of GSA for 283, 298 and 313 K were 3.274 × 10−10, 5.069 × 10−10 and 7.356 × 10−10 m2/s, respectively. Recovery efficiency of GSA was achieved to 99.81 %. In comparison with pseudo first-order and pseudo second-order equations, the PDM model demonstrated the best fit to the kinetics data of GSA adsorption. Adsorption/desorption experiments proved that D08 offers great adsorption capacity, high adsorption rate and good repeatability. In order to help us to accurately comprehend the mass transfer process, numerical simulation and post-processing to variables c(r, t) and q(r, t) were performed to clarify the adsorption process.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Oct 13, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off