Adsorption of nutrients on natural Spanish clays for enriching seed coatings

Adsorption of nutrients on natural Spanish clays for enriching seed coatings Coating seeds with nutrients remains an effective way of supplying fertilizers for the establishment and development of seedlings. Clays have been proposed, among other coating materials, because of their low price and favorable properties. Nine natural clays (R1-R9), collected in the eastern Andalusian region (south of Spain), were evaluated for the retention of P, Mn and Zn, with the ultimate goal of designing enriched seed coatings. The clays were similar in composition, with high Ca content. Various equations were used for the fitting of kinetic and adsorption data. Adsorption rates of Mn were higher with R2, R6 was the clay in which Zn exhibited the most rapid kinetics, while P was adsorbed on R7 at the highest rate. Slower adsorption rates corresponded in all cases to Zn. The pseudo-second order model adequately explained the experimental kinetic data of Mn, Zn and P on the different sorbents. Adsorption isotherms indicated that the maximum adsorption capacity on the analyzed clays was ranged as Zn > Mn > > P. Clays were able to retain nutrients for long periods of time (up to 96 days) and desorption was inversely related with adsorption. Simultaneous addition on selected clays of Zn and Mn led to significantly higher nutrient desorption. The co-presence in clays of various compounds (nutrients and/or pesticides) affected their release, so this aspect deserves special attention in coating design. Results obtained suggest the feasibility of using these clay materials enriched with nutrients for seed coating. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Adsorption Springer Journals

Loading next page...
 
/lp/springer_journal/adsorption-of-nutrients-on-natural-spanish-clays-for-enriching-seed-ujNgHTI7Vz
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Chemistry; Industrial Chemistry/Chemical Engineering; Surfaces and Interfaces, Thin Films; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0929-5607
eISSN
1572-8757
D.O.I.
10.1007/s10450-017-9897-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial