Adsorption of methyl violet using pH- and temperature-sensitive cellulose filament/poly(NIPAM-co-AAc) hybrid hydrogels

Adsorption of methyl violet using pH- and temperature-sensitive cellulose... Cellulose filament (CF) was modified via hybridization with poly (N-isopropylacrylamide-co-acrylic acid), which was prepared by free radical copolymerization of two monomers: N-isopropylacrylamide (NIPAM) as the thermosensitive component and acrylic acid (AAc) as the pH sensitive component. The copolymer was characterized with scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and colloid tritation measurements. SEM and AFM images indicated the formation of semi-interpenetrating network (S-IPN) structure between cellulose filaments and poly(NIPAM-co-AAc). FTIR spectra displayed the characteristic peaks for CF and poly(NIPAM-co-AAc). TGA suggested that there was no degradation occurred for cellulose, and physical crosslinks between cellulose and poly(NIPAM-co-AAc) might be formed in the S-IPN. The amount of negative charges of CF/poly(NIPAM-co-AAc) was about 14.6 times that of neat CF. The adsorption of MV on CF/poly(NIPAM-co-AAc) reflected pH-dependence and pH 7.0 was the optimum pH value for MV adsorption. Adsorption isotherms at 293, 313 and 333 K could be described by Langmuir, Freundlich, Temkin and Sips models, amongst which Langmuir model had the best R 2 values. At 293 K, the maximum adsorption capacity of S-IPN hybrids was 226.02 mg/g, which was higher than that of neat CF (64.83 mg/g). The negative values of ΔG 0 and positive values ΔH 0 calculated through thermodynamics equation indicated that the adsorption towards MV was a spontaneous and endothermic process. The adsorption kinetics followed a pseudo-second-order model and exhibited a three-stage intra-particle diffusion mode. The S-IPN hydrogels showed an increased desorption rate and an accelerated desorption process when temperature was increased. Furthermore, the S-IPN hydrogels showed that the desorption of MV was promoted by increasing temperature. Finally, the regenerated hydrogels reserved an adsorption capacity superior to that of the regenerated CF. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science Springer Journals

Adsorption of methyl violet using pH- and temperature-sensitive cellulose filament/poly(NIPAM-co-AAc) hybrid hydrogels

Loading next page...
 
/lp/springer_journal/adsorption-of-methyl-violet-using-ph-and-temperature-sensitive-F6qUHvJ8eE
Publisher
Springer US
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Materials Science; Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics
ISSN
0022-2461
eISSN
1573-4803
D.O.I.
10.1007/s10853-018-2342-0
Publisher site
See Article on Publisher Site

Abstract

Cellulose filament (CF) was modified via hybridization with poly (N-isopropylacrylamide-co-acrylic acid), which was prepared by free radical copolymerization of two monomers: N-isopropylacrylamide (NIPAM) as the thermosensitive component and acrylic acid (AAc) as the pH sensitive component. The copolymer was characterized with scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and colloid tritation measurements. SEM and AFM images indicated the formation of semi-interpenetrating network (S-IPN) structure between cellulose filaments and poly(NIPAM-co-AAc). FTIR spectra displayed the characteristic peaks for CF and poly(NIPAM-co-AAc). TGA suggested that there was no degradation occurred for cellulose, and physical crosslinks between cellulose and poly(NIPAM-co-AAc) might be formed in the S-IPN. The amount of negative charges of CF/poly(NIPAM-co-AAc) was about 14.6 times that of neat CF. The adsorption of MV on CF/poly(NIPAM-co-AAc) reflected pH-dependence and pH 7.0 was the optimum pH value for MV adsorption. Adsorption isotherms at 293, 313 and 333 K could be described by Langmuir, Freundlich, Temkin and Sips models, amongst which Langmuir model had the best R 2 values. At 293 K, the maximum adsorption capacity of S-IPN hybrids was 226.02 mg/g, which was higher than that of neat CF (64.83 mg/g). The negative values of ΔG 0 and positive values ΔH 0 calculated through thermodynamics equation indicated that the adsorption towards MV was a spontaneous and endothermic process. The adsorption kinetics followed a pseudo-second-order model and exhibited a three-stage intra-particle diffusion mode. The S-IPN hydrogels showed an increased desorption rate and an accelerated desorption process when temperature was increased. Furthermore, the S-IPN hydrogels showed that the desorption of MV was promoted by increasing temperature. Finally, the regenerated hydrogels reserved an adsorption capacity superior to that of the regenerated CF.

Journal

Journal of Materials ScienceSpringer Journals

Published: May 9, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off