Adsorption of CH3 COOH on TiO2: IR and theoretical investigations

Adsorption of CH3 COOH on TiO2: IR and theoretical investigations Adsorption of organic molecules on TiO2 surfaces is widely used in a number of technological applications, from heterogeneous catalysis, in particular photodegradation of organic pollutants, to dye-sensitized solar cells (DSSCs), where in most cases the dye molecules are grafted to the anatase TiO2 surface through a carboxylic group. In particular, organic/TiO2 systems can be of relevant importance in the modeling of electronic devices, in which the molecular layer is able to finely tune the electric properties, as well as of highly efficient heterogeneous catalysts. A key step is the understanding of the nature of the carbon-oxygen-titanium bonds on such surfaces, which is the specific aim of our combined IR and ab initio study of the adsorption of CH3COOH on TiO2. The experimental determination of the CH3COOH frequency shifts due to the absorption on the P25 (Degussa) TiO2 surface was performed by means of a step-wise procedure, consisting of a preliminary outgassing at 600°C of TiO2, in order to have a high dehydroxilation degree of the surface, followed by IR measurements at increasing CH3COOH pressure and subsequent desorption. Frequency calculations to be compared with experimental results were performed within a cluster approach using GAUSSIAN03 package. In order to make such calculations feasible, we decided to use an ONIOM approach where the model system, i.e., the small portion corresponding to CH3COOH plus the surface atoms, is treated at DFT level while the real system, comprising the bulk atoms, at MSINDO level. Once properly tested the ONIOM approach to characterize the interaction of TiO2 with CH3COOH, we computed the vibrational frequencies and compared them with the results of the IR experiments, providing some insight for the interpretation of the experimental complex vibrational pattern. Research on Chemical Intermediates Springer Journals

Adsorption of CH3 COOH on TiO2: IR and theoretical investigations

Loading next page...
Springer Netherlands
Copyright © 2007 by Springer
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial