Adsorption of benzene onto mesoporous silicates modified by titanium

Adsorption of benzene onto mesoporous silicates modified by titanium Mesoporous molecular sieve SBA-15 modified by titanium has been utilized for removing organic pollutants, such as benzene, from air. Titanium was impregnated inside SBA-15 by wetness impregnation after synthesis of SBA-15 (impregnation method) or was doped into the SBA-15 framework by the direct addition of Ti precursor into the sol during synthesis (doping method). In the breakthrough curves for gas-phase benzene adsorption, Ti addition into SBA-15 resulted in the enhancement of benzene adsorption capacity, depending on Ti loading amounts. An increase in adsorption temperature remarkably reduced the benzene adsorption capacity, indicating that the interaction between benzene and the materials was weak. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Adsorption of benzene onto mesoporous silicates modified by titanium

Loading next page...
 
/lp/springer_journal/adsorption-of-benzene-onto-mesoporous-silicates-modified-by-titanium-45yh0haG0s
Publisher
Springer Netherlands
Copyright
Copyright © 2008 by Springer
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/BF03036933
Publisher site
See Article on Publisher Site

Abstract

Mesoporous molecular sieve SBA-15 modified by titanium has been utilized for removing organic pollutants, such as benzene, from air. Titanium was impregnated inside SBA-15 by wetness impregnation after synthesis of SBA-15 (impregnation method) or was doped into the SBA-15 framework by the direct addition of Ti precursor into the sol during synthesis (doping method). In the breakthrough curves for gas-phase benzene adsorption, Ti addition into SBA-15 resulted in the enhancement of benzene adsorption capacity, depending on Ti loading amounts. An increase in adsorption temperature remarkably reduced the benzene adsorption capacity, indicating that the interaction between benzene and the materials was weak.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Apr 15, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off