Adsorption desulfurization performance and mechanism over nanocrystalline NiO/Al2O3-1 adsorbent

Adsorption desulfurization performance and mechanism over nanocrystalline NiO/Al2O3-1 adsorbent Desulfurization performance was evaluated by an adsorption model or real oil (diesel and kerosene) at low temperature using nanocrystalline NiO/Al2O3-1 adsorbent in static equipment. The properties of the NiO/Al2O3 adsorbent samples were characterized by BET surface areas, transmission electron microscopy, FTIR spectra, and TG-DTG curves. Desulfurization experimental results indicated that the desulfurization efficiency for kerosene is much higher than that for diesel due to the π-electronic interaction and S–M bonds with NiO/Al2O3-1 adsorbent. Also, a performance of adsorbent regeneration was kept well for multiple cycles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Applied Chemistry Springer Journals

Adsorption desulfurization performance and mechanism over nanocrystalline NiO/Al2O3-1 adsorbent

Loading next page...
 
/lp/springer_journal/adsorption-desulfurization-performance-and-mechanism-over-14RDkjMd0s
Publisher
Springer Journals
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Chemistry; Chemistry/Food Science, general; Industrial Chemistry/Chemical Engineering
ISSN
1070-4272
eISSN
1608-3296
D.O.I.
10.1134/S1070427216120168
Publisher site
See Article on Publisher Site

Abstract

Desulfurization performance was evaluated by an adsorption model or real oil (diesel and kerosene) at low temperature using nanocrystalline NiO/Al2O3-1 adsorbent in static equipment. The properties of the NiO/Al2O3 adsorbent samples were characterized by BET surface areas, transmission electron microscopy, FTIR spectra, and TG-DTG curves. Desulfurization experimental results indicated that the desulfurization efficiency for kerosene is much higher than that for diesel due to the π-electronic interaction and S–M bonds with NiO/Al2O3-1 adsorbent. Also, a performance of adsorbent regeneration was kept well for multiple cycles.

Journal

Russian Journal of Applied ChemistrySpringer Journals

Published: Apr 20, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off