ADS: the adaptive data series index

ADS: the adaptive data series index Numerous applications continuously produce big amounts of data series, and in several time critical scenarios analysts need to be able to query these data as soon as they become available. This, however, is not currently possible with the state-of-the-art indexing methods and for very large data series collections. In this paper, we present the first adaptive indexing mechanism, specifically tailored to solve the problem of indexing and querying very large data series collections. We present a detailed design and evaluation of our method using approximate and exact query algorithms with both synthetic and real data sets. Adaptive indexing significantly outperforms previous solutions, gracefully handling large data series collections, reducing the data to query delay: By the time state-of-the-art indexing techniques finish indexing 1 billion data series (and before answering even a single query), our method has already answered $$3*10^5$$ 3 ∗ 10 5 queries. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

ADS: the adaptive data series index

Loading next page...
 
/lp/springer_journal/ads-the-adaptive-data-series-index-tAZ97n4xxW
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-016-0442-5
Publisher site
See Article on Publisher Site

Abstract

Numerous applications continuously produce big amounts of data series, and in several time critical scenarios analysts need to be able to query these data as soon as they become available. This, however, is not currently possible with the state-of-the-art indexing methods and for very large data series collections. In this paper, we present the first adaptive indexing mechanism, specifically tailored to solve the problem of indexing and querying very large data series collections. We present a detailed design and evaluation of our method using approximate and exact query algorithms with both synthetic and real data sets. Adaptive indexing significantly outperforms previous solutions, gracefully handling large data series collections, reducing the data to query delay: By the time state-of-the-art indexing techniques finish indexing 1 billion data series (and before answering even a single query), our method has already answered $$3*10^5$$ 3 ∗ 10 5 queries.

Journal

The VLDB JournalSpringer Journals

Published: Aug 31, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off