Adrenergic receptor agonists induce the differentiation of pluripotent stem cell-derived hepatoblasts into hepatocyte-like cells

Adrenergic receptor agonists induce the differentiation of pluripotent stem cell-derived... Current induction methods of hepatocytes from human induced pluripotent stem cells (hiPSCs) are neither low cost nor stable. By screening a chemical library of 1,120 bioactive compounds and known drugs, we identified the α1-adrenergic receptor agonist methoxamine hydrochloride as a small molecule that promotes the differentiation of hiPSC-derived hepatoblasts into ALBUMIN+ hepatocyte-like cells. Other α1-adrenergic receptor agonists also induced the differentiation of hepatocyte-like cells, and an α1-receptor antagonist blocked the hepatic-inducing activity of methoxamine hydrochloride and that of the combination of hepatocyte growth factor (HGF) and Oncostatin M (OsM), two growth factors often used for the induction of hepatoblasts into hepatocyte-like cells. We also confirmed that treatment with methoxamine hydrochloride activates the signal transducer and activator of transcription 3 (STAT3) pathway downstream of IL-6 family cytokines including OsM. These findings allowed us to establish hepatic differentiation protocols for both mouse embryonic stem cells (mESCs) and hiPSCs using small molecules at the step from hepatoblasts into hepatocyte-like cells. The results of the present study suggest that α1-adrenergic agonists induce hepatocyte-like cells by working downstream of HGF and OsM to activate STAT3. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

Adrenergic receptor agonists induce the differentiation of pluripotent stem cell-derived hepatoblasts into hepatocyte-like cells

Loading next page...
 
/lp/springer_journal/adrenergic-receptor-agonists-induce-the-differentiation-of-pluripotent-gvXIhDlHp5
Publisher
Nature Publishing Group UK
Copyright
Copyright © 2017 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-017-16858-5
Publisher site
See Article on Publisher Site

Abstract

Current induction methods of hepatocytes from human induced pluripotent stem cells (hiPSCs) are neither low cost nor stable. By screening a chemical library of 1,120 bioactive compounds and known drugs, we identified the α1-adrenergic receptor agonist methoxamine hydrochloride as a small molecule that promotes the differentiation of hiPSC-derived hepatoblasts into ALBUMIN+ hepatocyte-like cells. Other α1-adrenergic receptor agonists also induced the differentiation of hepatocyte-like cells, and an α1-receptor antagonist blocked the hepatic-inducing activity of methoxamine hydrochloride and that of the combination of hepatocyte growth factor (HGF) and Oncostatin M (OsM), two growth factors often used for the induction of hepatoblasts into hepatocyte-like cells. We also confirmed that treatment with methoxamine hydrochloride activates the signal transducer and activator of transcription 3 (STAT3) pathway downstream of IL-6 family cytokines including OsM. These findings allowed us to establish hepatic differentiation protocols for both mouse embryonic stem cells (mESCs) and hiPSCs using small molecules at the step from hepatoblasts into hepatocyte-like cells. The results of the present study suggest that α1-adrenergic agonists induce hepatocyte-like cells by working downstream of HGF and OsM to activate STAT3.

Journal

Scientific ReportsSpringer Journals

Published: Dec 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off