Adiabatic quantum counting by geometric phase estimation

Adiabatic quantum counting by geometric phase estimation We design an adiabatic quantum algorithm for the counting problem, i.e., approximating the proportion, α, of the marked items in a given database. As the quantum system undergoes a designed cyclic adiabatic evolution, it acquires a Berry phase 2πα. By estimating the Berry phase, we can approximate α, and solve the problem. For an error bound $${\epsilon}$$ , the algorithm can solve the problem with cost of order $${(\frac{1}{\epsilon})^{3/2}}$$ , which is not as good as the optimal algorithm in the quantum circuit model, but better than the classical random algorithm. Moreover, since the Berry phase is a purely geometric feature, the result may be robust to decoherence and resilient to certain noise. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Adiabatic quantum counting by geometric phase estimation

Loading next page...
 
/lp/springer_journal/adiabatic-quantum-counting-by-geometric-phase-estimation-016cAn0rZh
Publisher
Springer US
Copyright
Copyright © 2009 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-009-0132-y
Publisher site
See Article on Publisher Site

Abstract

We design an adiabatic quantum algorithm for the counting problem, i.e., approximating the proportion, α, of the marked items in a given database. As the quantum system undergoes a designed cyclic adiabatic evolution, it acquires a Berry phase 2πα. By estimating the Berry phase, we can approximate α, and solve the problem. For an error bound $${\epsilon}$$ , the algorithm can solve the problem with cost of order $${(\frac{1}{\epsilon})^{3/2}}$$ , which is not as good as the optimal algorithm in the quantum circuit model, but better than the classical random algorithm. Moreover, since the Berry phase is a purely geometric feature, the result may be robust to decoherence and resilient to certain noise.

Journal

Quantum Information ProcessingSpringer Journals

Published: Sep 24, 2009

References

  • Quantum summation with an application to integration
    Heinrich, S.
  • Path integration on a quantum computer
    Traub, J.F.; Wozniakowski, H.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off