Adaptive vector validation in image velocimetry to minimise the influence of outlier clusters

Adaptive vector validation in image velocimetry to minimise the influence of outlier clusters The universal outlier detection scheme (Westerweel and Scarano in Exp Fluids 39:1096–1100, 2005) and the distance-weighted universal outlier detection scheme for unstructured data (Duncan et al. in Meas Sci Technol 21:057002, 2010) are the most common PIV data validation routines. However, such techniques rely on a spatial comparison of each vector with those in a fixed-size neighbourhood and their performance subsequently suffers in the presence of clusters of outliers. This paper proposes an advancement to render outlier detection more robust while reducing the probability of mistakenly invalidating correct vectors. Velocity fields undergo a preliminary evaluation in terms of local coherency, which parametrises the extent of the neighbourhood with which each vector will be compared subsequently. Such adaptivity is shown to reduce the number of undetected outliers, even when implemented in the afore validation schemes. In addition, the authors present an alternative residual definition considering vector magnitude and angle adopting a modified Gaussian-weighted distance-based averaging median. This procedure is able to adapt the degree of acceptable background fluctuations in velocity to the local displacement magnitude. The traditional, extended and recommended validation methods are numerically assessed on the basis of flow fields from an isolated vortex, a turbulent channel flow and a DNS simulation of forced isotropic turbulence. The resulting validation method is adaptive, requires no user-defined parameters and is demonstrated to yield the best performances in terms of outlier under- and over-detection. Finally, the novel validation routine is applied to the PIV analysis of experimental studies focused on the near wake behind a porous disc and on a supersonic jet, illustrating the potential gains in spatial resolution and accuracy. Experiments in Fluids Springer Journals

Adaptive vector validation in image velocimetry to minimise the influence of outlier clusters

Loading next page...
Springer Berlin Heidelberg
Copyright © 2016 by The Author(s)
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial