Adaptive tracking control for a class of uncertain nonlinear systems with infinite number of actuator failures using neural networks

Adaptive tracking control for a class of uncertain nonlinear systems with infinite number of... We consider adaptive compensation for infinite number of actuator failures in the tracking control of uncertain nonlinear systems. We construct an adaptive controller by combining the common Lyapunov function approach and the structural characteristic of neural networks. The proposed control strategy is feasible under the presupposition that the systems have a nonstrict-feedback structure. We prove that the states of the closed-loop system are bounded and the tracking error converges to a small neighborhood of the origin under the designed controllers, even though there are an infinite number of actuator failures. At last, the validity of the proposed control scheme is demonstrated by two examples. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advances in Difference Equations Springer Journals

Adaptive tracking control for a class of uncertain nonlinear systems with infinite number of actuator failures using neural networks

Loading next page...
 
/lp/springer_journal/adaptive-tracking-control-for-a-class-of-uncertain-nonlinear-systems-yRngx33Uqq
Publisher
Springer Journals
Copyright
Copyright © 2017 by The Author(s)
Subject
Mathematics; Difference and Functional Equations; Mathematics, general; Analysis; Functional Analysis; Ordinary Differential Equations; Partial Differential Equations
eISSN
1687-1847
D.O.I.
10.1186/s13662-017-1426-5
Publisher site
See Article on Publisher Site

Abstract

We consider adaptive compensation for infinite number of actuator failures in the tracking control of uncertain nonlinear systems. We construct an adaptive controller by combining the common Lyapunov function approach and the structural characteristic of neural networks. The proposed control strategy is feasible under the presupposition that the systems have a nonstrict-feedback structure. We prove that the states of the closed-loop system are bounded and the tracking error converges to a small neighborhood of the origin under the designed controllers, even though there are an infinite number of actuator failures. At last, the validity of the proposed control scheme is demonstrated by two examples.

Journal

Advances in Difference EquationsSpringer Journals

Published: Dec 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off