Adaptive tracking control for a class of uncertain nonlinear systems with infinite number of actuator failures using neural networks

Adaptive tracking control for a class of uncertain nonlinear systems with infinite number of... We consider adaptive compensation for infinite number of actuator failures in the tracking control of uncertain nonlinear systems. We construct an adaptive controller by combining the common Lyapunov function approach and the structural characteristic of neural networks. The proposed control strategy is feasible under the presupposition that the systems have a nonstrict-feedback structure. We prove that the states of the closed-loop system are bounded and the tracking error converges to a small neighborhood of the origin under the designed controllers, even though there are an infinite number of actuator failures. At last, the validity of the proposed control scheme is demonstrated by two examples. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advances in Difference Equations Springer Journals

Adaptive tracking control for a class of uncertain nonlinear systems with infinite number of actuator failures using neural networks

Loading next page...
 
/lp/springer_journal/adaptive-tracking-control-for-a-class-of-uncertain-nonlinear-systems-yRngx33Uqq
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by The Author(s)
Subject
Mathematics; Difference and Functional Equations; Mathematics, general; Analysis; Functional Analysis; Ordinary Differential Equations; Partial Differential Equations
eISSN
1687-1847
D.O.I.
10.1186/s13662-017-1426-5
Publisher site
See Article on Publisher Site

Abstract

We consider adaptive compensation for infinite number of actuator failures in the tracking control of uncertain nonlinear systems. We construct an adaptive controller by combining the common Lyapunov function approach and the structural characteristic of neural networks. The proposed control strategy is feasible under the presupposition that the systems have a nonstrict-feedback structure. We prove that the states of the closed-loop system are bounded and the tracking error converges to a small neighborhood of the origin under the designed controllers, even though there are an infinite number of actuator failures. At last, the validity of the proposed control scheme is demonstrated by two examples.

Journal

Advances in Difference EquationsSpringer Journals

Published: Dec 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off