Adaptive Sparse System Identification in Compressed Space

Adaptive Sparse System Identification in Compressed Space In this paper, we propose a method for adaptive identification of sparse systems. The method requires low number of filter weights, significantly less than the number of taps of sparse system. The approach is based on compressed sensing (CS) technique. In fact, we adaptively estimate a compressed version of high dimensional sparse system. The aim is accomplished by using the structure of random filter and an interpolator at the transmission line. They are arranged such that the linear time invariant (LTI) property of the overall system (compressed system) is preserved. The unique features of the identification in the reduced dimensions are investigated. Stability in high convergence rates and robustness against highly correlated input signals are two important advantages of the proposed method. Furthermore, we propose a modified algorithm for optimization of the random filter and illustrate its impact by numerical results. Two appropriate reconstruction algorithms are evaluated for recovery of original sparse system. Simulation results indicate that at low levels of sparsity, the proposed approach outperforms the conventional least mean square (LMS) method and has comparable performance with the regularized LMS algorithms, only by half number of the filter weights. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wireless Personal Communications Springer Journals

Adaptive Sparse System Identification in Compressed Space

Loading next page...
 
/lp/springer_journal/adaptive-sparse-system-identification-in-compressed-space-kRUvOZr0sZ
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Engineering; Communications Engineering, Networks; Signal,Image and Speech Processing; Computer Communication Networks
ISSN
0929-6212
eISSN
1572-834X
D.O.I.
10.1007/s11277-017-4211-6
Publisher site
See Article on Publisher Site

Abstract

In this paper, we propose a method for adaptive identification of sparse systems. The method requires low number of filter weights, significantly less than the number of taps of sparse system. The approach is based on compressed sensing (CS) technique. In fact, we adaptively estimate a compressed version of high dimensional sparse system. The aim is accomplished by using the structure of random filter and an interpolator at the transmission line. They are arranged such that the linear time invariant (LTI) property of the overall system (compressed system) is preserved. The unique features of the identification in the reduced dimensions are investigated. Stability in high convergence rates and robustness against highly correlated input signals are two important advantages of the proposed method. Furthermore, we propose a modified algorithm for optimization of the random filter and illustrate its impact by numerical results. Two appropriate reconstruction algorithms are evaluated for recovery of original sparse system. Simulation results indicate that at low levels of sparsity, the proposed approach outperforms the conventional least mean square (LMS) method and has comparable performance with the regularized LMS algorithms, only by half number of the filter weights.

Journal

Wireless Personal CommunicationsSpringer Journals

Published: May 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off