Adaptive responses of scots pine to the impact of adverse abiotic factors on the rhizosphere

Adaptive responses of scots pine to the impact of adverse abiotic factors on the rhizosphere The impact of long-term seasonal soil freezing, drought, and waterlogging on the rhizosphere of young Scots pine trees (Pinus sylvestris L., age class 1) has been simulated in experiments. The results have shown that cold stress exposure leads to reduction of the rates of linear and radial tree growth and of chlorophyll content in needles, a shift in the peak of starch content, and initiation of free amino acid deposition in the aboveground plant parts. Drought activates utilization of carbohydrate reserves and amino acid accumulation in the root bast, whereas soil waterlogging stimulates deposition of carbohydrates but causes a decrease in the levels of chlorophyll and amino acids in all plant tissues. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Ecology Springer Journals

Adaptive responses of scots pine to the impact of adverse abiotic factors on the rhizosphere

Loading next page...
 
/lp/springer_journal/adaptive-responses-of-scots-pine-to-the-impact-of-adverse-abiotic-u1027wQOK8
Publisher
Springer Journals
Copyright
Copyright © 2009 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Environment, general; Ecology
ISSN
1067-4136
eISSN
1608-3334
D.O.I.
10.1134/S1067413609060022
Publisher site
See Article on Publisher Site

Abstract

The impact of long-term seasonal soil freezing, drought, and waterlogging on the rhizosphere of young Scots pine trees (Pinus sylvestris L., age class 1) has been simulated in experiments. The results have shown that cold stress exposure leads to reduction of the rates of linear and radial tree growth and of chlorophyll content in needles, a shift in the peak of starch content, and initiation of free amino acid deposition in the aboveground plant parts. Drought activates utilization of carbohydrate reserves and amino acid accumulation in the root bast, whereas soil waterlogging stimulates deposition of carbohydrates but causes a decrease in the levels of chlorophyll and amino acids in all plant tissues.

Journal

Russian Journal of EcologySpringer Journals

Published: Nov 15, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off