Adaptive polling algorithm to provide subscriber and service differentiation in a Long-Reach EPON

Adaptive polling algorithm to provide subscriber and service differentiation in a Long-Reach EPON A novel interleaved polling algorithm for Long-Reach EPONs is proposed in order to simultaneously provide subscriber and class of service differentiation. It is demonstrated that the new polling algorithm applied to a typical 100 km Long-Reach EPON performs better than centralized methods, where bandwidth prediction is needed to overcome the higher round trip time in which ONUs cannot transmit. As polling methods in Long-Reach EPONs do not require prediction, they are much simpler and show less computational complexity than centralized schemes, avoiding the inaccuracy of bandwidth prediction. Simulation results show that the new algorithm increases the achieved throughput when compared to centralized algorithms with traffic prediction, obtaining a significant reduction of both mean packet delay and packet loss ratio for the highest priority service level profiles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Adaptive polling algorithm to provide subscriber and service differentiation in a Long-Reach EPON

Loading next page...
 
/lp/springer_journal/adaptive-polling-algorithm-to-provide-subscriber-and-service-0jloy6FjST
Publisher
Springer US
Copyright
Copyright © 2009 by Springer Science+Business Media, LLC
Subject
Computer Science; Characterization and Evaluation of Materials; Electrical Engineering; Computer Communication Networks
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-009-0230-x
Publisher site
See Article on Publisher Site

Abstract

A novel interleaved polling algorithm for Long-Reach EPONs is proposed in order to simultaneously provide subscriber and class of service differentiation. It is demonstrated that the new polling algorithm applied to a typical 100 km Long-Reach EPON performs better than centralized methods, where bandwidth prediction is needed to overcome the higher round trip time in which ONUs cannot transmit. As polling methods in Long-Reach EPONs do not require prediction, they are much simpler and show less computational complexity than centralized schemes, avoiding the inaccuracy of bandwidth prediction. Simulation results show that the new algorithm increases the achieved throughput when compared to centralized algorithms with traffic prediction, obtaining a significant reduction of both mean packet delay and packet loss ratio for the highest priority service level profiles.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Dec 2, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off