Adaptive Optimization of Control Parameters for Feed-Forward Software Defined Equalization

Adaptive Optimization of Control Parameters for Feed-Forward Software Defined Equalization In this paper we briefly describe the design, implementation, and evaluation of a novel adaptive optimization approach for the feed-forward software defined equalization (FFSDE) method using the least mean squared (LMS) algorithm. In our design, we adaptively change the filter length (N) and step size ( $$\mu$$ μ ) to achieve the optimal bit error rate value. We used a vector signal generator RF PXI-5670 and a vector signal analyzer (VSA) RF PXI-5660 to test the validity of our approach. We implemented our method for the M-ary quadrature amplitude modulation (M-QAM) scheme in the VSA (which served as a receiver). The experimental results showed that we achieved high convergence speed and accuracy for rapidly changing transmitter channel characteristics. The automatic optimal setting feature of the LMS Algorithm parameters N and $$\mu$$ μ , enabled us to solve the hardware configuration problem for the FFSDE method. Determination of the LMS Algorithm training sequence size for the particular M-QAM allowed us to eliminate redundant data of the training sequence and increase the throughput. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wireless Personal Communications Springer Journals

Adaptive Optimization of Control Parameters for Feed-Forward Software Defined Equalization

Loading next page...
 
/lp/springer_journal/adaptive-optimization-of-control-parameters-for-feed-forward-software-TF9J2ooZ70
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Engineering; Communications Engineering, Networks; Signal,Image and Speech Processing; Computer Communication Networks
ISSN
0929-6212
eISSN
1572-834X
D.O.I.
10.1007/s11277-017-4036-3
Publisher site
See Article on Publisher Site

Abstract

In this paper we briefly describe the design, implementation, and evaluation of a novel adaptive optimization approach for the feed-forward software defined equalization (FFSDE) method using the least mean squared (LMS) algorithm. In our design, we adaptively change the filter length (N) and step size ( $$\mu$$ μ ) to achieve the optimal bit error rate value. We used a vector signal generator RF PXI-5670 and a vector signal analyzer (VSA) RF PXI-5660 to test the validity of our approach. We implemented our method for the M-ary quadrature amplitude modulation (M-QAM) scheme in the VSA (which served as a receiver). The experimental results showed that we achieved high convergence speed and accuracy for rapidly changing transmitter channel characteristics. The automatic optimal setting feature of the LMS Algorithm parameters N and $$\mu$$ μ , enabled us to solve the hardware configuration problem for the FFSDE method. Determination of the LMS Algorithm training sequence size for the particular M-QAM allowed us to eliminate redundant data of the training sequence and increase the throughput.

Journal

Wireless Personal CommunicationsSpringer Journals

Published: Feb 2, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off