Adaptive neural network control for visual servoing of underwater vehicles with pose estimation

Adaptive neural network control for visual servoing of underwater vehicles with pose estimation In this paper, the visual servo control of fully actuated underwater vehicles is investigated by employing a position-based approach. Firstly, the global coordinates and Euler angles of the underwater vehicle with respect to a stationary visual target are estimated by an unscented Kalman filter with the visual measurements of point features, whose coordinates in the global frame attached to the stationary target are precisely known. Then, the adaptive neural network controller is designed for underwater vehicles to track the desired trajectory with estimated global pose information. The convergence of tracking errors is ensured by using a single-hidden-layer neural network, in conjunction with a sliding mode controller, to compensate for dynamic uncertainties and external disturbances. Simulation experiments with an underwater vehicle to track a time-varying trajectory and hold its position at a desired point are provided to demonstrate the performances of the proposed vision-based controller. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Marine Science and Technology Springer Journals

Adaptive neural network control for visual servoing of underwater vehicles with pose estimation

Loading next page...
 
/lp/springer_journal/adaptive-neural-network-control-for-visual-servoing-of-underwater-qabF6kjUNW
Publisher
Springer Japan
Copyright
Copyright © 2016 by JASNAOE
Subject
Engineering; Automotive Engineering; Engineering Fluid Dynamics; Engineering Design; Offshore Engineering; Mechanical Engineering
ISSN
0948-4280
eISSN
1437-8213
D.O.I.
10.1007/s00773-016-0426-6
Publisher site
See Article on Publisher Site

Abstract

In this paper, the visual servo control of fully actuated underwater vehicles is investigated by employing a position-based approach. Firstly, the global coordinates and Euler angles of the underwater vehicle with respect to a stationary visual target are estimated by an unscented Kalman filter with the visual measurements of point features, whose coordinates in the global frame attached to the stationary target are precisely known. Then, the adaptive neural network controller is designed for underwater vehicles to track the desired trajectory with estimated global pose information. The convergence of tracking errors is ensured by using a single-hidden-layer neural network, in conjunction with a sliding mode controller, to compensate for dynamic uncertainties and external disturbances. Simulation experiments with an underwater vehicle to track a time-varying trajectory and hold its position at a desired point are provided to demonstrate the performances of the proposed vision-based controller.

Journal

Journal of Marine Science and TechnologySpringer Journals

Published: Dec 26, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off