Adaptive neural dynamic global PID sliding mode control for MEMS gyroscope

Adaptive neural dynamic global PID sliding mode control for MEMS gyroscope In this paper, a dynamic global proportional integral derivative (PID) sliding mode controller based on an adaptive radial basis function (RBF) neural estimator is developed to guarantee the stability and robustness in the presence of a lumped uncertainty for a micro electromechanical systems (MEMS) gyroscope. This approach gives a new dynamic global PID sliding mode manifold, which not only enables system trajectory to run on the global sliding mode surface at the start point more quickly and eliminates the reaching phase of the conventional sliding mode control, but also restrains the steady-state error and reduces the chattering via a dynamic PID sliding surface. A RBF neural network (NN) system is employed to estimate the lumped uncertainty and eliminate the chattering phenomenon at the same time. Additionally, adaptive laws and dynamic global PID sliding control gains that ensure the asymptotic stability of the close-loop system are proposed, together with the techniques for deciding which kind of basis function should be selected. Finally, simulation results demonstrate the effectiveness of RBFNN dynamic global PID sliding mode control method, meanwhile some comparisons are made to verify the good properties of the suggested control approach. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Machine Learning and Cybernetics Springer Journals

Adaptive neural dynamic global PID sliding mode control for MEMS gyroscope

Loading next page...
 
/lp/springer_journal/adaptive-neural-dynamic-global-pid-sliding-mode-control-for-mems-70ND0V9nzQ
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Computational Intelligence; Artificial Intelligence (incl. Robotics); Control, Robotics, Mechatronics; Complex Systems; Systems Biology; Pattern Recognition
ISSN
1868-8071
eISSN
1868-808X
D.O.I.
10.1007/s13042-016-0543-x
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial