Adaptive multi-context cooperatively coevolving particle swarm optimization for large-scale problems

Adaptive multi-context cooperatively coevolving particle swarm optimization for large-scale problems A novel adaptive multi-context cooperatively coevolving particle swarm optimization (AM-CCPSO) algorithm is proposed in an attempt to improve the performance on solving large-scale optimization problems (LSOP). Due to the curse of dimensionality, most optimization algorithms show their weaknesses on LSOP, and the cooperative co-evolution (CC) is often utilized to overcome such weaknesses. The basic CC framework employs one context vector for cooperatively, but greedily coevolving different subcomponents, which sometimes fails to find global optimum, especially on some complex non-separable LSOP. In the AM-CCPSO, more than one context vectors are employed to provide robust and effective co-evolution. These vectors are selected with respect to each particle of each subcomponent according to their own adaptive probabilities. In the AM-CCPSO, a new PSO updating rule is also proposed to exploit “four best positions” via Gaussian sampling. On a comprehensive set of benchmarks (up to 1000 real-valued variables), as well as on a real world application, the performance of AM-CCPSO can rival several state-of-the-art evolutionary algorithms. Experimental results indicate that the novel adaptive multi-context CC framework is effective to improve the performance of PSO on solving LSOP and can be generally extended in other evolutionary algorithms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Soft Computing Springer Journals

Adaptive multi-context cooperatively coevolving particle swarm optimization for large-scale problems

Loading next page...
 
/lp/springer_journal/adaptive-multi-context-cooperatively-coevolving-particle-swarm-YYSelUjdo8
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Computational Intelligence; Artificial Intelligence (incl. Robotics); Mathematical Logic and Foundations; Control, Robotics, Mechatronics
ISSN
1432-7643
eISSN
1433-7479
D.O.I.
10.1007/s00500-016-2081-6
Publisher site
See Article on Publisher Site

Abstract

A novel adaptive multi-context cooperatively coevolving particle swarm optimization (AM-CCPSO) algorithm is proposed in an attempt to improve the performance on solving large-scale optimization problems (LSOP). Due to the curse of dimensionality, most optimization algorithms show their weaknesses on LSOP, and the cooperative co-evolution (CC) is often utilized to overcome such weaknesses. The basic CC framework employs one context vector for cooperatively, but greedily coevolving different subcomponents, which sometimes fails to find global optimum, especially on some complex non-separable LSOP. In the AM-CCPSO, more than one context vectors are employed to provide robust and effective co-evolution. These vectors are selected with respect to each particle of each subcomponent according to their own adaptive probabilities. In the AM-CCPSO, a new PSO updating rule is also proposed to exploit “four best positions” via Gaussian sampling. On a comprehensive set of benchmarks (up to 1000 real-valued variables), as well as on a real world application, the performance of AM-CCPSO can rival several state-of-the-art evolutionary algorithms. Experimental results indicate that the novel adaptive multi-context CC framework is effective to improve the performance of PSO on solving LSOP and can be generally extended in other evolutionary algorithms.

Journal

Soft ComputingSpringer Journals

Published: Feb 23, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off