Adaptive laboratory evolution of Corynebacterium glutamicum towards higher growth rates on glucose minimal medium

Adaptive laboratory evolution of Corynebacterium glutamicum towards higher growth rates on... In this work, we performed a comparative adaptive laboratory evolution experiment of the important biotechnological platform strain Corynebacterium glutamicum ATCC 13032 and its prophage-free variant MB001 towards improved growth rates on glucose minimal medium. Both strains displayed a comparable adaptation behavior and no significant differences in genomic rearrangements and mutation frequencies. Remarkably, a significant fitness leap by about 20% was observed for both strains already after 100 generations. Isolated top clones (UBw and UBm) showed an about 26% increased growth rate on glucose minimal medium. Genome sequencing of evolved clones and populations resulted in the identification of key mutations in pyk (pyruvate kinase), fruK (1-phosphofructokinase) and corA encoding a Mg2+ importer. The reintegration of selected pyk and fruK mutations resulted in an increased glucose consumption rate and ptsG expression causative for the accelerated growth on glucose minimal medium, whereas corA mutations improved growth under Mg2+ limiting conditions. Overall, this study resulted in the identification of causative key mutations improving the growth of C. glutamicum on glucose. These identified mutational hot spots as well as the two evolved top strains, UBw and UBm, represent promising targets for future metabolic engineering approaches. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

Adaptive laboratory evolution of Corynebacterium glutamicum towards higher growth rates on glucose minimal medium

Loading next page...
 
/lp/springer_journal/adaptive-laboratory-evolution-of-corynebacterium-glutamicum-towards-1OWtIDknLF
Publisher
Nature Publishing Group UK
Copyright
Copyright © 2017 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-017-17014-9
Publisher site
See Article on Publisher Site

Abstract

In this work, we performed a comparative adaptive laboratory evolution experiment of the important biotechnological platform strain Corynebacterium glutamicum ATCC 13032 and its prophage-free variant MB001 towards improved growth rates on glucose minimal medium. Both strains displayed a comparable adaptation behavior and no significant differences in genomic rearrangements and mutation frequencies. Remarkably, a significant fitness leap by about 20% was observed for both strains already after 100 generations. Isolated top clones (UBw and UBm) showed an about 26% increased growth rate on glucose minimal medium. Genome sequencing of evolved clones and populations resulted in the identification of key mutations in pyk (pyruvate kinase), fruK (1-phosphofructokinase) and corA encoding a Mg2+ importer. The reintegration of selected pyk and fruK mutations resulted in an increased glucose consumption rate and ptsG expression causative for the accelerated growth on glucose minimal medium, whereas corA mutations improved growth under Mg2+ limiting conditions. Overall, this study resulted in the identification of causative key mutations improving the growth of C. glutamicum on glucose. These identified mutational hot spots as well as the two evolved top strains, UBw and UBm, represent promising targets for future metabolic engineering approaches.

Journal

Scientific ReportsSpringer Journals

Published: Dec 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off