Adaptive changes in pigment complex of Pinus sylvestris needles upon cold acclimation

Adaptive changes in pigment complex of Pinus sylvestris needles upon cold acclimation We studied seasonal changes in the content and ratio between photosynthetic pigments in one-yearold needles of Scotch pine (Pinus sylvestris L.) growing in Central Yakutia. Maximum accumulation of chlorophylls in developed young needles occurred in July when light and temperature conditions were favorable. In this period, the needles were notable for a relatively high level of β-carotene and neoxanthin and a reduced content of lutein and the pigments of violaxanthin cycle (VXC). In the course of autumn hardening, the content of chlorophylls decreased two times. Total content of carotenoids remained the same, but pigment composition considerably changed when plants progressed from a vegetating to frost-resistant state. We revealed time and temperature ranges of variation for individual carotenoids. In the beginning of hardening at reduced and low abovezero temperatures, the content of β-carotene in the needles decreased, the pigment-protein complexes (PPC) became enriched in lutein, the pigment pool of VXC gradually increased, and the content of neoxanthin transiently rose. When average daily air temperature further decreased to near- zero values, the content of zeaxanthin sharply rose. In winter, high levels of lutein and zeaxanthin were maintained. Main changes in pigment complex of the needles of P. sylvestris were completed before the coming of steady below-zero temperatures. The obtained data suggested that, upon seasonal decrease in temperature in early stages of hardening, a decrease in the level of chlorophyll promotes a reduction in the quantity of absorbed radiant energy. Apparently, this is accompanied by activation of the role of lutein and neoxanthin that perform specific photoprotective functions in antenna PPC associated with a gradual decrease in plants’ ability to quench singlet energy of excited chlorophyll. Accumulation of zeaxanthin as a result of inhibition of back reaction of epoxidation at near-zero temperatures creates necessary prerequisites for turning on the mechanisms of steady dissipation of absorbed light energy, which do not depend on transmembrane proton gradient of thylakoids. At the same time, zeaxanthin can perform antioxidant functions both in PPC and in the lipid phase of thylakoid membranes. The obtained data point to an adaptive nature of the observed reactions and a specific role of individual pigments in structural and functional reorganization of photosynthetic machinery in the course of development of frost-resistance in the needles. Russian Journal of Plant Physiology Springer Journals

Adaptive changes in pigment complex of Pinus sylvestris needles upon cold acclimation

Loading next page...
Pleiades Publishing
Copyright © 2016 by Pleiades Publishing, Ltd.
Life Sciences; Plant Physiology; Plant Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial