Adaptation potential of photosynthesis in wheat cultivars with a capability of leaf rolling under high temperature conditions

Adaptation potential of photosynthesis in wheat cultivars with a capability of leaf rolling under... For the first time, the adaptive role of the rolling leaf trait for tolerance of wheat plants (Triticum aestivum L.) to the main factor of drought, high temperature, was demonstrated. Cv. Otan with high degree of this trait expression was more tolerant to temperature stress (40°C, 4 h during 2 days (2h/day)). Changes in parameters of chlorophyll fluorescence, F v/F m and R Fd690, suggest that cv. Otan was tolerant to inhibition of photochemical activities of photosystem II (PSII) and photosystem I (PSI). Furthermore, high temperature had no effect on the rate of net photosynthesis (P N) in cv. Otan, although it decreased this parameter in the other wheat cultivars. The main factors, which provid for this tolerance, were adaptation of the photosynthetic pigment system by active accumulation of carotenoids, more stable structural organization of PSII and PSI, and their high photosynthetic activities, as well as efficient stomatal regulation of transpiration and supplying of mesophyll cells with CO2. It is hypothesized that the physiological role of the rolling leaf trait is the maintenance of adaptation potential by increasing the efficiency of water metabolism in the flag leaves of wheat under high temperature. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Adaptation potential of photosynthesis in wheat cultivars with a capability of leaf rolling under high temperature conditions

Loading next page...
 
/lp/springer_journal/adaptation-potential-of-photosynthesis-in-wheat-cultivars-with-a-OxnZ0UBFrO
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2010 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Sciences ; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443710010048
Publisher site
See Article on Publisher Site

Abstract

For the first time, the adaptive role of the rolling leaf trait for tolerance of wheat plants (Triticum aestivum L.) to the main factor of drought, high temperature, was demonstrated. Cv. Otan with high degree of this trait expression was more tolerant to temperature stress (40°C, 4 h during 2 days (2h/day)). Changes in parameters of chlorophyll fluorescence, F v/F m and R Fd690, suggest that cv. Otan was tolerant to inhibition of photochemical activities of photosystem II (PSII) and photosystem I (PSI). Furthermore, high temperature had no effect on the rate of net photosynthesis (P N) in cv. Otan, although it decreased this parameter in the other wheat cultivars. The main factors, which provid for this tolerance, were adaptation of the photosynthetic pigment system by active accumulation of carotenoids, more stable structural organization of PSII and PSI, and their high photosynthetic activities, as well as efficient stomatal regulation of transpiration and supplying of mesophyll cells with CO2. It is hypothesized that the physiological role of the rolling leaf trait is the maintenance of adaptation potential by increasing the efficiency of water metabolism in the flag leaves of wheat under high temperature.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Jan 12, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off