Adaptation of regional digital soil mapping for precision agriculture

Adaptation of regional digital soil mapping for precision agriculture In the initial phase of a national project to map clay, sand and soil organic matter (SOM) content in arable topsoil in Sweden, a study area in south-west Sweden comprising about 100 000 ha of arable land was assessed. Models were created for texture, SOM and two estimated variables for lime requirement determination (target pH and buffering capacity), using a data mining method (multivariate adaptive regression splines). Two existing reference soil datasets were used: a grid dataset and a dataset created for individual farms. The predictor data were of three types: airborne gamma-ray spectrometry data, digital elevation from airborne laser scanning, and legacy data on Quaternary geology. Validations were designed to suit applicability assessments of prediction maps for precision agriculture. The predictor data proved applicable for regional mapping of topsoil texture at 50 × 50 m2 spatial resolution (root mean square error: clay = 6.5 %; sand = 13.2 %). A novel modelling strategy, ‘Farm Interactive’, in which soil analysis data for individual farms were added to the regional data, and given extra weight, improved the map locally. SOM models were less satisfactory. Variable-rate application files for liming created from derived digital soil maps and locally interpolated soil data were compared with ‘ground truth’ maps created by proximal sensors on one test farm. The Farm Interactive methodology generated the best predictions and was deemed suitable for adaptation of regional digital soil maps for precision agricultural purposes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Adaptation of regional digital soil mapping for precision agriculture

Loading next page...
 
/lp/springer_journal/adaptation-of-regional-digital-soil-mapping-for-precision-agriculture-WzlyDDZQ0z
Publisher
Springer Journals
Copyright
Copyright © 2016 by The Author(s)
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-016-9439-8
Publisher site
See Article on Publisher Site

Abstract

In the initial phase of a national project to map clay, sand and soil organic matter (SOM) content in arable topsoil in Sweden, a study area in south-west Sweden comprising about 100 000 ha of arable land was assessed. Models were created for texture, SOM and two estimated variables for lime requirement determination (target pH and buffering capacity), using a data mining method (multivariate adaptive regression splines). Two existing reference soil datasets were used: a grid dataset and a dataset created for individual farms. The predictor data were of three types: airborne gamma-ray spectrometry data, digital elevation from airborne laser scanning, and legacy data on Quaternary geology. Validations were designed to suit applicability assessments of prediction maps for precision agriculture. The predictor data proved applicable for regional mapping of topsoil texture at 50 × 50 m2 spatial resolution (root mean square error: clay = 6.5 %; sand = 13.2 %). A novel modelling strategy, ‘Farm Interactive’, in which soil analysis data for individual farms were added to the regional data, and given extra weight, improved the map locally. SOM models were less satisfactory. Variable-rate application files for liming created from derived digital soil maps and locally interpolated soil data were compared with ‘ground truth’ maps created by proximal sensors on one test farm. The Farm Interactive methodology generated the best predictions and was deemed suitable for adaptation of regional digital soil maps for precision agricultural purposes.

Journal

Precision AgricultureSpringer Journals

Published: Feb 27, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off