Acupuncture stimulation at GB34 suppresses 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced oxidative stress in the striatum of mice

Acupuncture stimulation at GB34 suppresses 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced... Recent studies have suggested that increased oxidative stress is a potential etiology in Parkinson’s disease (PD). In this study, we investigated whether acupuncture regulates antioxidants in the striatum (ST) of a PD mouse model. Male C57BL/6 mice were administered 30 mg/kg of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intraperitoneally once a day for 5 days and given acupuncture stimulation at SI3 or GB34 (Yanglingquan) was for 12 consecutive days. Dopaminergic neuronal survival in the nigrostriatal pathway and DJ-1 expression in the ST was evaluated by immunostaining, and the activities of superoxide dismutase (SOD) and catalase (CAT) in the ST was by enzyme-linked immunosorbent assay. MPTP administration induced dopaminergic neuronal death in the nigrostriatal pathway, which was suppressed by acupuncture stimulation at GB34. MPTP administration also suppressed DJ-1 expression and SOD and CAT activities in the ST, which were restored by acupuncture stimulation at GB34. These results indicate that the neuroprotective effect of acupuncture stimulation is due to regulation of the antioxidants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Physiological Sciences Springer Journals

Acupuncture stimulation at GB34 suppresses 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced oxidative stress in the striatum of mice

Loading next page...
 
/lp/springer_journal/acupuncture-stimulation-at-gb34-suppresses-1-methyl-4-phenyl-1-2-3-6-uXs7pAZgD9
Publisher
Springer Japan
Copyright
Copyright © 2017 by The Physiological Society of Japan and Springer Japan
Subject
Biomedicine; Human Physiology; Neurosciences; Animal Biochemistry; Animal Physiology; Cell Physiology; Neurobiology
ISSN
1880-6546
eISSN
1880-6562
D.O.I.
10.1007/s12576-017-0547-7
Publisher site
See Article on Publisher Site

Abstract

Recent studies have suggested that increased oxidative stress is a potential etiology in Parkinson’s disease (PD). In this study, we investigated whether acupuncture regulates antioxidants in the striatum (ST) of a PD mouse model. Male C57BL/6 mice were administered 30 mg/kg of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intraperitoneally once a day for 5 days and given acupuncture stimulation at SI3 or GB34 (Yanglingquan) was for 12 consecutive days. Dopaminergic neuronal survival in the nigrostriatal pathway and DJ-1 expression in the ST was evaluated by immunostaining, and the activities of superoxide dismutase (SOD) and catalase (CAT) in the ST was by enzyme-linked immunosorbent assay. MPTP administration induced dopaminergic neuronal death in the nigrostriatal pathway, which was suppressed by acupuncture stimulation at GB34. MPTP administration also suppressed DJ-1 expression and SOD and CAT activities in the ST, which were restored by acupuncture stimulation at GB34. These results indicate that the neuroprotective effect of acupuncture stimulation is due to regulation of the antioxidants.

Journal

The Journal of Physiological SciencesSpringer Journals

Published: Jun 10, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off