Activity of the System for Chlorophyll Biosynthesis and Structural and Functional Organization of Chloroplasts in a Plastome en:chlorina-5 Sunflower Mutant

Activity of the System for Chlorophyll Biosynthesis and Structural and Functional Organization of... Chlorophyll (Chl) deficiency in leaves of a plastome sunflower (Helianthus annuus L.) en:chlorina-5 mutant is due to the formation of smaller chloroplasts with a markedly reduced membrane system, as compared to the parent 3629 line. Abnormalities in the structure of the photosynthetic apparatus in the mutant can be mainly attributed to changes in the formation of photosystem I and its light-harvesting complexes. Chl deficiency in en:chlorina-5 correlated with its lower capability of synthesizing the first specific Chl precursor, 5-aminolevulinic acid (ALA) in the light. Light-independent stages of Chl biosynthesis in the mutant had the same efficiency as in leaves of the parent line. ALA formation in darkness and its conversion into protochlorophyllide did not depend on the extent of photosynthetic membrane development and photosynthetic activity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Activity of the System for Chlorophyll Biosynthesis and Structural and Functional Organization of Chloroplasts in a Plastome en:chlorina-5 Sunflower Mutant

Loading next page...
 
/lp/springer_journal/activity-of-the-system-for-chlorophyll-biosynthesis-and-structural-and-Pxl9bmNIpX
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2005 by MAIK "Nauka/Interperiodica"
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1007/s11183-005-0090-x
Publisher site
See Article on Publisher Site

Abstract

Chlorophyll (Chl) deficiency in leaves of a plastome sunflower (Helianthus annuus L.) en:chlorina-5 mutant is due to the formation of smaller chloroplasts with a markedly reduced membrane system, as compared to the parent 3629 line. Abnormalities in the structure of the photosynthetic apparatus in the mutant can be mainly attributed to changes in the formation of photosystem I and its light-harvesting complexes. Chl deficiency in en:chlorina-5 correlated with its lower capability of synthesizing the first specific Chl precursor, 5-aminolevulinic acid (ALA) in the light. Light-independent stages of Chl biosynthesis in the mutant had the same efficiency as in leaves of the parent line. ALA formation in darkness and its conversion into protochlorophyllide did not depend on the extent of photosynthetic membrane development and photosynthetic activity.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Sep 28, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off