Activity of chitosan–lysozyme nanoparticles on the growth, membrane integrity, and β-1,3-glucanase production by Aspergillus parasiticus

Activity of chitosan–lysozyme nanoparticles on the growth, membrane integrity, and... Synthesis of nanocomposites from antimicrobial biopolymers such as chitosan (CS) and lysozyme (LZ) is an important and promising area in bionanotechnology. Chitosan–lysozyme (CS–LZ) nanoparticles (NPs) were prepared by the nanoprecipitation method, using commercial chitosan of 153 kDa. TEM and dynamic light scattering (DLS) analysis were carried out to evaluate the morphology, size, dispersion, and Z potential. Association efficiency of lysozyme was determined using Coomassie blue assay. The antifungal activity of NPs against Aspergillus parasiticus was evaluated through cell viability (XTT), germination and morphometry of spores, and reducing sugars production; the effects on membrane integrity and cell wall were also analyzed. NPs’ size were found in the range of 13.4 and 11.8 nm for CS–LZ and CS NPs, respectively, and high Z potential value was observed in both NPs. Also, high association of lysozyme was presented in the CS matrix. With respect to the biological responses, CS–LZ NPs reduced the viability of A. parasiticus and a strong inhibitory effect on the germination of spores (100% of inhibition) was observed at 24 h in in vitro assays. CS–LZ and CS NPs affected the membrane integrity and the cell wall of spores of fungi with respect to control, which is consistent with the low amount of reducing sugars detected. CS–LZ NPs prepared by nanoprecipitation promise to be a viable and safe alternative for use in biological systems, with a possible low or null impact to humans and biota. However, the potential benefits and the environmental and health implications of NPs need to be globally discussed due to its possible negative effects. 3 Biotech Springer Journals

Activity of chitosan–lysozyme nanoparticles on the growth, membrane integrity, and β-1,3-glucanase production by Aspergillus parasiticus

Loading next page...
Springer Berlin Heidelberg
Copyright © 2017 by Springer-Verlag GmbH Germany
Chemistry; Biotechnology; Agriculture; Cancer Research; Bioinformatics; Stem Cells; Biomaterials
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial