Active control of supersonic impingement tones using steady and pulsed microjets

Active control of supersonic impingement tones using steady and pulsed microjets In recent years, it has been demonstrated that direct microjet injection into the shear layer of the main jet disrupts the feedback loop inherent in high speed impinging jet flows, thereby significantly reducing the adverse effects. The amount of noise reduced by microjet actuation is known to be dependent on nozzle operating conditions. In this paper, two active control strategies using microjets are suggested to maintain a uniform, reliable, and optimal reduction of these tones over the entire range of operating conditions. In the first method, a quasi-closed loop control strategy is proposed using steady microjet injection and the proper orthogonal decomposition (POD) algorithm. The most energetic spatial mode of the unsteady pressure along the nozzle diameter is captured using the POD, which in turn is used to determine the distribution of microjet intensity along the nozzle exit. Preliminary experimental results from a STOVL supersonic jet facility at Mach 1.5 show that the quasi-closed loop control strategy, in some cases, provides an additional 8–10 dB reduction compared to axisymmetric injection at the desired operating conditions. The second method consists of a pulsed microjet injection, motivated by the need to further improve the noise suppression. It was observed that the pulsed microjet was able to bring about the same noise reduction as steady injection using approximately 40% of the corresponding mass flow rate of the steady microjet case. Moreover, as the duty cycle increased, the performance of pulsed injection was further enhanced and was observed to completely eliminate the impinging tones at all operating conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Active control of supersonic impingement tones using steady and pulsed microjets

Loading next page...
 
/lp/springer_journal/active-control-of-supersonic-impingement-tones-using-steady-and-pulsed-0UTG9tz0RG
Publisher
Springer-Verlag
Copyright
Copyright © 2006 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-006-0189-7
Publisher site
See Article on Publisher Site

Abstract

In recent years, it has been demonstrated that direct microjet injection into the shear layer of the main jet disrupts the feedback loop inherent in high speed impinging jet flows, thereby significantly reducing the adverse effects. The amount of noise reduced by microjet actuation is known to be dependent on nozzle operating conditions. In this paper, two active control strategies using microjets are suggested to maintain a uniform, reliable, and optimal reduction of these tones over the entire range of operating conditions. In the first method, a quasi-closed loop control strategy is proposed using steady microjet injection and the proper orthogonal decomposition (POD) algorithm. The most energetic spatial mode of the unsteady pressure along the nozzle diameter is captured using the POD, which in turn is used to determine the distribution of microjet intensity along the nozzle exit. Preliminary experimental results from a STOVL supersonic jet facility at Mach 1.5 show that the quasi-closed loop control strategy, in some cases, provides an additional 8–10 dB reduction compared to axisymmetric injection at the desired operating conditions. The second method consists of a pulsed microjet injection, motivated by the need to further improve the noise suppression. It was observed that the pulsed microjet was able to bring about the same noise reduction as steady injection using approximately 40% of the corresponding mass flow rate of the steady microjet case. Moreover, as the duty cycle increased, the performance of pulsed injection was further enhanced and was observed to completely eliminate the impinging tones at all operating conditions.

Journal

Experiments in FluidsSpringer Journals

Published: Oct 10, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off