Activation of tomato PR and wound-related genes by a mutagenized tomato MAP kinase kinase through divergent pathways

Activation of tomato PR and wound-related genes by a mutagenized tomato MAP kinase kinase through... A mitogen-activated protein kinase kinase (MAPKK) gene, tMEK2, was isolated from tomato cv. Bonny Best. By mutagenesis, a permanently active variant, tMEK2 MUT, was created. Both wild-type tMEK2 and mutant tMEK2 MUT were driven by a newly described strong plant constitutive promoter, tCUP, in a tomato protoplast transient gene expression system. Pathogenesis-related genes, PR1b1, PR3 and Twi1, and a wound-inducible gene, ER5, were activated by tMEK2MUT. Specific inhibitors of p38 class MAPK inhibited tMEK2MUT-induced activation of PR3 and ER5 genes but not that of the PR1b1 or Twi1 gene. Arabidopsis dual-specificity protein tyrosine phosphatase1 (DsPTP1) and maize protein phosphatase 1 (PP1) inhibited tMEK2MUT-induced activation of the ER5 gene and the Twi1 gene, respectively, whereas PR1b1 and PR3 were not affected by either AtDsPTP1, or maize PP1, or Arabidopsis protein phosphatase 2A (PP2A). We have demonstrated for the first time that a single MAPKK activates an array of PR and wound-related genes. Our observation indicates that the activation of the genes downstream of tMEK2 occurs through divergent pathways and that tMEK2 may play an important role in the interaction of signal transduction pathways that mediate responses to both biotic (e.g. disease) and abiotic stresses (e.g. wound responsiveness). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Activation of tomato PR and wound-related genes by a mutagenized tomato MAP kinase kinase through divergent pathways

Loading next page...
 
/lp/springer_journal/activation-of-tomato-pr-and-wound-related-genes-by-a-mutagenized-TIRWuSG70z
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2001 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1010633215445
Publisher site
See Article on Publisher Site

Abstract

A mitogen-activated protein kinase kinase (MAPKK) gene, tMEK2, was isolated from tomato cv. Bonny Best. By mutagenesis, a permanently active variant, tMEK2 MUT, was created. Both wild-type tMEK2 and mutant tMEK2 MUT were driven by a newly described strong plant constitutive promoter, tCUP, in a tomato protoplast transient gene expression system. Pathogenesis-related genes, PR1b1, PR3 and Twi1, and a wound-inducible gene, ER5, were activated by tMEK2MUT. Specific inhibitors of p38 class MAPK inhibited tMEK2MUT-induced activation of PR3 and ER5 genes but not that of the PR1b1 or Twi1 gene. Arabidopsis dual-specificity protein tyrosine phosphatase1 (DsPTP1) and maize protein phosphatase 1 (PP1) inhibited tMEK2MUT-induced activation of the ER5 gene and the Twi1 gene, respectively, whereas PR1b1 and PR3 were not affected by either AtDsPTP1, or maize PP1, or Arabidopsis protein phosphatase 2A (PP2A). We have demonstrated for the first time that a single MAPKK activates an array of PR and wound-related genes. Our observation indicates that the activation of the genes downstream of tMEK2 occurs through divergent pathways and that tMEK2 may play an important role in the interaction of signal transduction pathways that mediate responses to both biotic (e.g. disease) and abiotic stresses (e.g. wound responsiveness).

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 3, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off