Activation of hypersensitive cell death by pathogen-induced receptor-like protein kinases from Arabidopsis

Activation of hypersensitive cell death by pathogen-induced receptor-like protein kinases from... In Arabidopsis, there is a family of receptor-like protein kinases (RLKs) containing novel cysteine-rich repeats in their extracellular domains. Genes encoding many of these cysteine-rich RLKs (CRKs) are induced by pathogen infection, suggesting a possible role in plant defense responses. We have previously generated Arabidopsis plants expressing four pathogen-regulated CRK genes (CRK5, 6, 10 and 11) under control of a steroid-inducible promoter and found that induced expression of CRK5, but not the other three CRK genes, triggered hypersensitive response-like cell death in transgenic plants. In the present study, we have analyzed the structural relationship of the CRK family and identified three CRKs (CRK4, 19 and 20) that are structurally closely related to CRK5. Genes encoding these three CRKs are all induced by salicylic acid and pathogen infection. Furthermore, induced expression of CRK4, 19and 20 all activates rapid cell death in transgenic plants. Thus, the activity of inducing rapid cell death is shared by these structurally closely related CRKs. We have also performed yeast two-hybrid screens and identified proteins that interact with the kinase domains of CRKs. One of the identified CRK-interacting proteins is the kinase-associated type 2C protein phospohatase known to interact with a number of other RLKs through its kinase-interacting FHA domain. Other CRK-interacting proteins include a second protein with a FHA domain and another type 2C protein phosphatase. Interactions of CRKs with these three proteins in vivo were demonstrated through co-immunoprecipitation. These CRK-interacting proteins may play roles in the regulation and signaling of CRKs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Activation of hypersensitive cell death by pathogen-induced receptor-like protein kinases from Arabidopsis

Loading next page...
 
/lp/springer_journal/activation-of-hypersensitive-cell-death-by-pathogen-induced-receptor-yA65mv0p0d
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-004-3381-2
Publisher site
See Article on Publisher Site

Abstract

In Arabidopsis, there is a family of receptor-like protein kinases (RLKs) containing novel cysteine-rich repeats in their extracellular domains. Genes encoding many of these cysteine-rich RLKs (CRKs) are induced by pathogen infection, suggesting a possible role in plant defense responses. We have previously generated Arabidopsis plants expressing four pathogen-regulated CRK genes (CRK5, 6, 10 and 11) under control of a steroid-inducible promoter and found that induced expression of CRK5, but not the other three CRK genes, triggered hypersensitive response-like cell death in transgenic plants. In the present study, we have analyzed the structural relationship of the CRK family and identified three CRKs (CRK4, 19 and 20) that are structurally closely related to CRK5. Genes encoding these three CRKs are all induced by salicylic acid and pathogen infection. Furthermore, induced expression of CRK4, 19and 20 all activates rapid cell death in transgenic plants. Thus, the activity of inducing rapid cell death is shared by these structurally closely related CRKs. We have also performed yeast two-hybrid screens and identified proteins that interact with the kinase domains of CRKs. One of the identified CRK-interacting proteins is the kinase-associated type 2C protein phospohatase known to interact with a number of other RLKs through its kinase-interacting FHA domain. Other CRK-interacting proteins include a second protein with a FHA domain and another type 2C protein phosphatase. Interactions of CRKs with these three proteins in vivo were demonstrated through co-immunoprecipitation. These CRK-interacting proteins may play roles in the regulation and signaling of CRKs.

Journal

Plant Molecular BiologySpringer Journals

Published: Dec 30, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off