Activation of endoplasmic reticulum stress response by hepatitis C virus proteins

Activation of endoplasmic reticulum stress response by hepatitis C virus proteins Flaviviruses utilize the endoplasmic reticulum (ER) as the main site for replication and protein synthesis and cause some level of ER stress. In the present study, we evaluated the ability of HCV proteins to induce ER stress response by using a tetracycline-regulated cell line expressing a region of HCV genome containing the structural genes. In this system different levels of HCV protein expression could be obtained by varying the concentration of tetracycline in the medium. Real Time PCR and Western blotting assay demonstrated that HCV mRNA and protein levels reach a maximum value at 24–48 h and decrease at 72 h postinduction. Cell proliferation analysis indicated that HCV synthesis causes cell growth inhibition. The effect was also observed in cells expressing lower levels of HCV proteins. The expression profile of specific genes, which are markers of ER stress response, revealed the upregulation of the chaperone GRP78 and the transcription factor GADD153. Induction of GADD153 correlates with the downregulation of the antiapoptotic Bcl-2 gene suggesting that synthesis of HCV proteins may influence cell fate through the activation of ER stress signaling pathway. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Activation of endoplasmic reticulum stress response by hepatitis C virus proteins

Loading next page...
 
/lp/springer_journal/activation-of-endoplasmic-reticulum-stress-response-by-hepatitis-c-0epaqsOBTq
Publisher
Springer Journals
Copyright
Copyright © 2005 by Springer-Verlag/Wien
Subject
Biomedicine; Medical Microbiology; Virology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-004-0487-4
Publisher site
See Article on Publisher Site

Abstract

Flaviviruses utilize the endoplasmic reticulum (ER) as the main site for replication and protein synthesis and cause some level of ER stress. In the present study, we evaluated the ability of HCV proteins to induce ER stress response by using a tetracycline-regulated cell line expressing a region of HCV genome containing the structural genes. In this system different levels of HCV protein expression could be obtained by varying the concentration of tetracycline in the medium. Real Time PCR and Western blotting assay demonstrated that HCV mRNA and protein levels reach a maximum value at 24–48 h and decrease at 72 h postinduction. Cell proliferation analysis indicated that HCV synthesis causes cell growth inhibition. The effect was also observed in cells expressing lower levels of HCV proteins. The expression profile of specific genes, which are markers of ER stress response, revealed the upregulation of the chaperone GRP78 and the transcription factor GADD153. Induction of GADD153 correlates with the downregulation of the antiapoptotic Bcl-2 gene suggesting that synthesis of HCV proteins may influence cell fate through the activation of ER stress signaling pathway.

Journal

Archives of VirologySpringer Journals

Published: Jul 1, 2005

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off