Activation of acid growth in germinating horse chestnut seeds

Activation of acid growth in germinating horse chestnut seeds The validity of the acid-growth hypothesis is proved for the case of cell elongation initiation in germinating seeds of horse chestnut (Aesculus hippocastanum L.), the embryo axes of which are known to extend during the first stages of germination only by cell elongation. During seed imbibition, H+-ion excretion was firstly low; it increased several times prior to radicle emergence and was maintained at a high level during growth initiation and further cell elongation. Cell wall acidification and radicle emergence were enhanced in the presence of 0.02 mM fusicoccin, thus indicating the involvement of the plasma membrane H+-ATPase in the execution of acid growth. The presence of this enzyme and its activator (14-3-3 protein) in microsomal fractions obtained from radicles and hypocotyls of the embryo axes during and after initiation of cell elongation was demonstrated immunochemically. It is supposed that the initiation of cell elongation at early germination occurs via the activation of the plasma membrane H+-ATPase and results in the acidification of cell walls, leading to their higher extensibility, in accordance with the hypothesis of acid growth. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Activation of acid growth in germinating horse chestnut seeds

Loading next page...
 
/lp/springer_journal/activation-of-acid-growth-in-germinating-horse-chestnut-seeds-0q31JLy0Bt
Publisher
Springer Journals
Copyright
Copyright © 2013 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443713030114
Publisher site
See Article on Publisher Site

Abstract

The validity of the acid-growth hypothesis is proved for the case of cell elongation initiation in germinating seeds of horse chestnut (Aesculus hippocastanum L.), the embryo axes of which are known to extend during the first stages of germination only by cell elongation. During seed imbibition, H+-ion excretion was firstly low; it increased several times prior to radicle emergence and was maintained at a high level during growth initiation and further cell elongation. Cell wall acidification and radicle emergence were enhanced in the presence of 0.02 mM fusicoccin, thus indicating the involvement of the plasma membrane H+-ATPase in the execution of acid growth. The presence of this enzyme and its activator (14-3-3 protein) in microsomal fractions obtained from radicles and hypocotyls of the embryo axes during and after initiation of cell elongation was demonstrated immunochemically. It is supposed that the initiation of cell elongation at early germination occurs via the activation of the plasma membrane H+-ATPase and results in the acidification of cell walls, leading to their higher extensibility, in accordance with the hypothesis of acid growth.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Apr 22, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off