Actin Cortex Rearrangement Caused by Coupling with the Lipid Bilayer-Modeling Considerations

Actin Cortex Rearrangement Caused by Coupling with the Lipid Bilayer-Modeling Considerations Studies of cell membrane fluctuations under micro rheological measurements suggest that coupling between the lipid bilayer and the actin cortex can affects viscoelastic behavior of the single cell membranes. Coupling induces anomalous nature of energy dissipation during rearrangement of both: the actin cortex and the lipid bilayer. The actin cortex ability to rearrange for various cell types: erythrocytes, Jurkat cells, fibroblasts, epithelial lung cells, and muscle cells based on experimental data for storage and loss moduli versus angular velocity are considered. The cortex of softer cells such as erythrocytes, Jurkat cells, and fibroblasts has the ability to rearrange at low angular velocities which is quantified by their rearrangement time and the average size of the cortex micro domains. The rearrangement time of the cortex for Jurkat cells and fibroblasts is at the order of magnitude higher than that for erythrocytes, i.e., 2.70–7.53 s. The average size of the cortex micro domains for erythrocytes varied from 3.0 to 5.3 μm, for Jurkat cells is ~0.20–0.22 μm and for fibroblasts is ~36 nm. Lower size of the micro domains and higher rearrangement time indicate the stiffer cortex structure. The cortex rearrangement for stiffer cells such as epithelial lung cells and muscle cells has never been observed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Actin Cortex Rearrangement Caused by Coupling with the Lipid Bilayer-Modeling Considerations

Loading next page...
 
/lp/springer_journal/actin-cortex-rearrangement-caused-by-coupling-with-the-lipid-bilayer-hA2hFStA1k
Publisher
Springer US
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-015-9775-z
Publisher site
See Article on Publisher Site

Abstract

Studies of cell membrane fluctuations under micro rheological measurements suggest that coupling between the lipid bilayer and the actin cortex can affects viscoelastic behavior of the single cell membranes. Coupling induces anomalous nature of energy dissipation during rearrangement of both: the actin cortex and the lipid bilayer. The actin cortex ability to rearrange for various cell types: erythrocytes, Jurkat cells, fibroblasts, epithelial lung cells, and muscle cells based on experimental data for storage and loss moduli versus angular velocity are considered. The cortex of softer cells such as erythrocytes, Jurkat cells, and fibroblasts has the ability to rearrange at low angular velocities which is quantified by their rearrangement time and the average size of the cortex micro domains. The rearrangement time of the cortex for Jurkat cells and fibroblasts is at the order of magnitude higher than that for erythrocytes, i.e., 2.70–7.53 s. The average size of the cortex micro domains for erythrocytes varied from 3.0 to 5.3 μm, for Jurkat cells is ~0.20–0.22 μm and for fibroblasts is ~36 nm. Lower size of the micro domains and higher rearrangement time indicate the stiffer cortex structure. The cortex rearrangement for stiffer cells such as epithelial lung cells and muscle cells has never been observed.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Feb 7, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off