Acoustic damping rate measurements in binary mixtures of atomic species via transient-grating spectroscopy

Acoustic damping rate measurements in binary mixtures of atomic species via transient-grating... The objective of this work is to investigate the ability of transient-grating spectroscopy (TGS) to measure accurately the acoustic damping rate by analyzing the temporal behavior of laser-induced gratings. Experiments are performed in a binary gaseous mixture, with a trace amount of NO2, as a function of both composition and pressure. Measured and theoretically calculated acoustic damping rates are compared using both a classical model and a more comprehensive model that included additional diffusive mechanisms. The TGS technique demonstrated here provides a nearly instantaneous measurement with reasonably high spatial resolution. The experimental data agree well with theoretical predictions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Acoustic damping rate measurements in binary mixtures of atomic species via transient-grating spectroscopy

Loading next page...
 
/lp/springer_journal/acoustic-damping-rate-measurements-in-binary-mixtures-of-atomic-TeWb13SA5E
Publisher
Springer-Verlag
Copyright
Copyright © 2005 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-005-1012-6
Publisher site
See Article on Publisher Site

Abstract

The objective of this work is to investigate the ability of transient-grating spectroscopy (TGS) to measure accurately the acoustic damping rate by analyzing the temporal behavior of laser-induced gratings. Experiments are performed in a binary gaseous mixture, with a trace amount of NO2, as a function of both composition and pressure. Measured and theoretically calculated acoustic damping rates are compared using both a classical model and a more comprehensive model that included additional diffusive mechanisms. The TGS technique demonstrated here provides a nearly instantaneous measurement with reasonably high spatial resolution. The experimental data agree well with theoretical predictions.

Journal

Experiments in FluidsSpringer Journals

Published: Jun 14, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off