Acid–base characterization of heterogeneous catalysts: an up-to-date overview

Acid–base characterization of heterogeneous catalysts: an up-to-date overview In this overview, we focus on the different and current methods of acid–base characterization of heterogeneous catalysts and on their potential relation with catalytic properties in gas and liquid phases. Special emphasis is drawn on the main techniques currently employed such as the use of Hammett’s indicators, the use of basic or acidic probes of different strength for adsorption measurements in microcalorimetry and of their thermal programmed desorption, the use of other techniques such as FTIR, ESR, NMR, photoluminescence, Raman, UV–Vis, and XPS, to identify and describe acid–base sites, the use of model catalytic reactions, and of theoretical/modeling approaches. Relationships between such a characterization and catalytic properties in different acid or base reactions are discussed, and implemented for different catalysts and different reactions. The concept of thermodynamic acidity/basicity (determined via chemical physical characterization) versus reactivity (determined via catalytic properties) of acid–base sites is presented, and explains why relationships between acid–base properties and catalytic properties are very often met but are difficult to be established unambiguously and cannot be generalized. The case of acid–base properties in liquid phase “polar” (water, alcohol) and “apolar” (cyclohexane) as “effective” and “intrinsic” properties, respectively, and their relation with catalytic properties in liquid phase are also discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Acid–base characterization of heterogeneous catalysts: an up-to-date overview

Loading next page...
 
/lp/springer_journal/acid-base-characterization-of-heterogeneous-catalysts-an-up-to-date-gqVG97s0aK
Publisher
Springer Netherlands
Copyright
Copyright © 2015 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-015-1982-9
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial