We present several results related to the complexity-performance tradeoff in lossy compression. The first result shows that for a memoryless source with rate-distortion function R(D) and a bounded distortion measure, the rate-distortion point (R(D) + γ, D + ɛ) can be achieved with constant decompression time per (separable) symbol and compression time per symbol proportional to $$\left( {{{\lambda _1 } \mathord{\left/ {\vphantom {{\lambda _1 } \varepsilon }} \right. \kern-\nulldelimiterspace} \varepsilon }} \right)^{{{\lambda _2 } \mathord{\left/ {\vphantom {{\lambda _2 } {\gamma ^2 }}} \right. \kern-\nulldelimiterspace} {\gamma ^2 }}}$$ , where λ 1 and λ 2 are source dependent constants. The second result establishes that the same point can be achieved with constant decompression time and compression time per symbol proportional to $$\left( {{{\rho _1 } \mathord{\left/ {\vphantom {{\rho _1 } \gamma }} \right. \kern-\nulldelimiterspace} \gamma }} \right)^{{{\rho _2 } \mathord{\left/ {\vphantom {{\rho _2 } {\varepsilon ^2 }}} \right. \kern-\nulldelimiterspace} {\varepsilon ^2 }}}$$ . These results imply, for any function g(n) that increases without bound arbitrarily slowly, the existence of a sequence of lossy compression schemes of blocklength n with O(ng(n)) compression complexity and O(n) decompression complexity that achieve the point (R(D), D) asymptotically with increasing blocklength. We also establish that if the reproduction alphabet is finite, then for any given R there exists a universal lossy compression scheme with O(ng(n)) compression complexity and O(n) decompression complexity that achieves the point (R, D(R)) asymptotically for any stationary ergodic source with distortion-rate function D(·).
Problems of Information Transmission – Springer Journals
Published: Jan 24, 2013
It’s your single place to instantly
discover and read the research
that matters to you.
Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.
All for just $49/month
Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly
Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.
Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.
Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.
All the latest content is available, no embargo periods.
“Hi guys, I cannot tell you how much I love this resource. Incredible. I really believe you've hit the nail on the head with this site in regards to solving the research-purchase issue.”
Daniel C.
“Whoa! It’s like Spotify but for academic articles.”
@Phil_Robichaud
“I must say, @deepdyve is a fabulous solution to the independent researcher's problem of #access to #information.”
@deepthiw
“My last article couldn't be possible without the platform @deepdyve that makes journal papers cheaper.”
@JoseServera
DeepDyve Freelancer | DeepDyve Pro | |
---|---|---|
Price | FREE | $49/month |
Save searches from | ||
Create lists to | ||
Export lists, citations | ||
Read DeepDyve articles | Abstract access only | Unlimited access to over |
20 pages / month | ||
PDF Discount | 20% off | |
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.
ok to continue