Acetylcholine-activated Cl? Channel in the Chara Tonoplast

Acetylcholine-activated Cl? Channel in the Chara Tonoplast Acetylcholine has long been suggested to play a role in controlling physiological processes in plants, but no mechanism has been shown for its action. We show here that a chloride channel in the tonoplast (vacuolar membrane) of Chara corallina responds to acetylcholine. The channel has a conductance of 45 pS. The effect of acetylcholine is enhanced by nicotine, with the open probability increasing from 0.05 in the presence of 4 mM acetylcholine to 0.3 in the presence of 4 mM acetylcholine + 6 mM nicotine. Some effects of acetylcholine were seen at concentrations as low as 20 mM, with a maximum effect between 1 and 10 mM. In the intact cell, acetylcholine prolongs the depolarized phase of the action potential. We propose that this acetylcholine-gated channel has evolved separately from the mammalian acetylcholine-gated channel, and suggest that this represents a third form of acetylcholine signal transduction, after the nicotinic and muscarinic pathways in animal systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Acetylcholine-activated Cl? Channel in the Chara Tonoplast

Loading next page...
 
/lp/springer_journal/acetylcholine-activated-cl-channel-in-the-chara-tonoplast-boD5gGLyzU
Publisher
Springer-Verlag
Copyright
Copyright © 2002 by Springer-Verlag New York Inc.
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-001-0177-z
Publisher site
See Article on Publisher Site

Abstract

Acetylcholine has long been suggested to play a role in controlling physiological processes in plants, but no mechanism has been shown for its action. We show here that a chloride channel in the tonoplast (vacuolar membrane) of Chara corallina responds to acetylcholine. The channel has a conductance of 45 pS. The effect of acetylcholine is enhanced by nicotine, with the open probability increasing from 0.05 in the presence of 4 mM acetylcholine to 0.3 in the presence of 4 mM acetylcholine + 6 mM nicotine. Some effects of acetylcholine were seen at concentrations as low as 20 mM, with a maximum effect between 1 and 10 mM. In the intact cell, acetylcholine prolongs the depolarized phase of the action potential. We propose that this acetylcholine-gated channel has evolved separately from the mammalian acetylcholine-gated channel, and suggest that this represents a third form of acetylcholine signal transduction, after the nicotinic and muscarinic pathways in animal systems.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jul 1, 2002

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off