Accurate and sensitive diagnosis of geminiviruses through enrichment, high-throughput sequencing and automated sequence identification

Accurate and sensitive diagnosis of geminiviruses through enrichment, high-throughput sequencing... Existing diagnostic techniques used to identify plant-infecting DNA viruses and their associated molecules are often limited in their specificity and can be challenged by samples containing multiple viruses. We adapted a simple method of amplifying circular viral DNA and, in combination with high-throughput sequencing and bioinformatic analysis, used it as a virus diagnostic method. We validated this diagnostic method with a plant sample infected with a tomato yellow leaf curl geminivirus infectious clone and also compared PCR- and high-throughput-sequencing diagnostics on a geminivirus-infected field sample, showing that both methods gave similar results. Finally, we analyzed infected field samples of pepper from Mexico and tomato from India using this approach, demonstrating that it is both sensitive and capable of simultaneously identifying multiple discrete DNA viruses and subviral DNA elements in densely infected samples. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Accurate and sensitive diagnosis of geminiviruses through enrichment, high-throughput sequencing and automated sequence identification

Loading next page...
 
/lp/springer_journal/accurate-and-sensitive-diagnosis-of-geminiviruses-through-enrichment-cjrYDxDnZB
Publisher
Springer Vienna
Copyright
Copyright © 2012 by Springer-Verlag
Subject
Biomedicine; Medical Microbiology; Virology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-012-1253-7
Publisher site
See Article on Publisher Site

Abstract

Existing diagnostic techniques used to identify plant-infecting DNA viruses and their associated molecules are often limited in their specificity and can be challenged by samples containing multiple viruses. We adapted a simple method of amplifying circular viral DNA and, in combination with high-throughput sequencing and bioinformatic analysis, used it as a virus diagnostic method. We validated this diagnostic method with a plant sample infected with a tomato yellow leaf curl geminivirus infectious clone and also compared PCR- and high-throughput-sequencing diagnostics on a geminivirus-infected field sample, showing that both methods gave similar results. Finally, we analyzed infected field samples of pepper from Mexico and tomato from India using this approach, demonstrating that it is both sensitive and capable of simultaneously identifying multiple discrete DNA viruses and subviral DNA elements in densely infected samples.

Journal

Archives of VirologySpringer Journals

Published: May 1, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off