Accuracy and time performance of different schemes of the local field correction PIV technique

Accuracy and time performance of different schemes of the local field correction PIV technique Local field correction particle image velocimetry (LFC-PIV) has become an established alternative among high-resolution PIV techniques. Previous works by the authors introduced its implementation by means of simple algorithms. In these works the initial limitation of the method, which was related to the mean distance between particles, was removed. Comparison with other contemporary high-resolution techniques indicates that it offers advantages in robustness and accuracy. The trade-off for this better performance is a heavier computing load. Until now, the computing time that this load requires has not been characterized in detail, since this computing time could be substantially reduced by accepting a reduction in accuracy. This paper focuses on the characterization of the trade-off between time and accuracy, thus offering a new perspective to PIV. In this field, LFC-PIV offers a wide range of possibilities that are described in the paper. Several alternative schemes for LFC-PIV are tested, together with an analysis of the influence of the number of iterations. Performance figures for both accuracy and expended time are given. Metrological evaluation is carried out over synthetic images. A test of coherence between these results and the performance on real images is also presented. The paper shows that even for a limited number of iterations this technique offers advantages. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Accuracy and time performance of different schemes of the local field correction PIV technique

Loading next page...
 
/lp/springer_journal/accuracy-and-time-performance-of-different-schemes-of-the-local-field-cGMEeavtkv
Publisher
Springer-Verlag
Copyright
Copyright © 2002 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-002-0498-4
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial