Accelerating SPARQL queries by exploiting hash-based locality and adaptive partitioning

Accelerating SPARQL queries by exploiting hash-based locality and adaptive partitioning State-of-the-art distributed RDF systems partition data across multiple computer nodes (workers). Some systems perform cheap hash partitioning, which may result in expensive query evaluation. Others try to minimize inter-node communication, which requires an expensive data preprocessing phase, leading to a high startup cost. Apriori knowledge of the query workload has also been used to create partitions, which, however, are static and do not adapt to workload changes. In this paper, we propose AdPart, a distributed RDF system, which addresses the shortcomings of previous work. First, AdPart applies lightweight partitioning on the initial data, which distributes triples by hashing on their subjects; this renders its startup overhead low. At the same time, the locality-aware query optimizer of AdPart takes full advantage of the partitioning to (1) support the fully parallel processing of join patterns on subjects and (2) minimize data communication for general queries by applying hash distribution of intermediate results instead of broadcasting, wherever possible. Second, AdPart monitors the data access patterns and dynamically redistributes and replicates the instances of the most frequent ones among workers. As a result, the communication cost for future queries is drastically reduced or even eliminated. To control replication, AdPart implements an eviction policy for the redistributed patterns. Our experiments with synthetic and real data verify that AdPart: (1) starts faster than all existing systems; (2) processes thousands of queries before other systems become online; and (3) gracefully adapts to the query load, being able to evaluate queries on billion-scale RDF data in subseconds. The VLDB Journal Springer Journals

Accelerating SPARQL queries by exploiting hash-based locality and adaptive partitioning

Loading next page...
Springer Berlin Heidelberg
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Computer Science; Database Management
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial