ACBP4 and ACBP5, novel Arabidopsis acyl-CoA-binding proteins with kelch motifs that bind oleoyl-CoA

ACBP4 and ACBP5, novel Arabidopsis acyl-CoA-binding proteins with kelch motifs that bind oleoyl-CoA In plants, fatty acids synthesized in the chloroplasts are exported as acyl-CoA esters to the endoplasmic reticulum (ER). Cytosolic 10-kDa acyl-CoA-binding proteins (ACBPs), prevalent in eukaryotes, are involved in the storage and intracellular transport of acyl-CoAs. We have previously characterized Arabidopsis thaliana cDNAs encoding membrane-associated ACBPs with ankyrin repeats, designated ACBP1 and ACBP2, which show conservation to cytosolic ACBPs at the acyl-CoA-binding domain. Analysis of the Arabidopsis genome has revealed the presence of three more genes encoding putative proteins with acyl-CoA-binding domains, designated ACBP3, ACBP4 and ACBP5. Homologues of ACBP1 to ACBP5 have not been reported in any other organism. We show by reverse-transcriptase polymerase chain reaction (RT-PCR) analysis that ACBP3, ACBP4 and ACBP5 are expressed in all plant organs, like ACBP1 and ACBP2. ACBP4 and ACBP5 that share 81.4 identity and which contain kelch motifs were further investigated. To demonstrate their function in binding acyl-CoA, we have expressed them as (His)<inf>6</inf>-tagged recombinant proteins in Escherichia coli for in vitro binding assays. Both (His)_6-ACBP4 and (His)_6-ACBP5 bind [14C]oleoyl-CoA with high affinity, [14C]palmitoyl-CoA with lower affinity and did not bind [14C]arachidonyl-CoA. Eight mutant forms of each protein with single amino acid substitutions within the acyl-CoA-binding domain were produced and analyzed. On binding assays, all mutants were impaired in oleoyl-CoA binding. Hence, these novel ACBPs with kelch motifs have functional acyl-CoA-binding domains that bind oleoyl-CoA. Their predicted cytosol localization suggests that they could maintain an oleoyl-CoA pool in the cytosol or transport oleoyl-CoA from the plastids to the ER in plant lipid metabolism. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

ACBP4 and ACBP5, novel Arabidopsis acyl-CoA-binding proteins with kelch motifs that bind oleoyl-CoA

Loading next page...
 
/lp/springer_journal/acbp4-and-acbp5-novel-arabidopsis-acyl-coa-binding-proteins-with-kelch-ZOP5c2GHhh
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-004-0642-z
Publisher site
See Article on Publisher Site

Abstract

In plants, fatty acids synthesized in the chloroplasts are exported as acyl-CoA esters to the endoplasmic reticulum (ER). Cytosolic 10-kDa acyl-CoA-binding proteins (ACBPs), prevalent in eukaryotes, are involved in the storage and intracellular transport of acyl-CoAs. We have previously characterized Arabidopsis thaliana cDNAs encoding membrane-associated ACBPs with ankyrin repeats, designated ACBP1 and ACBP2, which show conservation to cytosolic ACBPs at the acyl-CoA-binding domain. Analysis of the Arabidopsis genome has revealed the presence of three more genes encoding putative proteins with acyl-CoA-binding domains, designated ACBP3, ACBP4 and ACBP5. Homologues of ACBP1 to ACBP5 have not been reported in any other organism. We show by reverse-transcriptase polymerase chain reaction (RT-PCR) analysis that ACBP3, ACBP4 and ACBP5 are expressed in all plant organs, like ACBP1 and ACBP2. ACBP4 and ACBP5 that share 81.4 identity and which contain kelch motifs were further investigated. To demonstrate their function in binding acyl-CoA, we have expressed them as (His)<inf>6</inf>-tagged recombinant proteins in Escherichia coli for in vitro binding assays. Both (His)_6-ACBP4 and (His)_6-ACBP5 bind [14C]oleoyl-CoA with high affinity, [14C]palmitoyl-CoA with lower affinity and did not bind [14C]arachidonyl-CoA. Eight mutant forms of each protein with single amino acid substitutions within the acyl-CoA-binding domain were produced and analyzed. On binding assays, all mutants were impaired in oleoyl-CoA binding. Hence, these novel ACBPs with kelch motifs have functional acyl-CoA-binding domains that bind oleoyl-CoA. Their predicted cytosol localization suggests that they could maintain an oleoyl-CoA pool in the cytosol or transport oleoyl-CoA from the plastids to the ER in plant lipid metabolism.

Journal

Plant Molecular BiologySpringer Journals

Published: Jan 4, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off