Acamprosate Modulates Alcohol-Induced Hippocampal NMDA Receptors and Brain Microsomal Ca2+-ATPase but Induces Oxidative Stress in Rat

Acamprosate Modulates Alcohol-Induced Hippocampal NMDA Receptors and Brain Microsomal Ca2+-ATPase... We investigated the effects of acamprosate on alcohol-induced oxidative toxicity, microsomal membrane Ca2+-ATPase (MMCA) activity and N-methyl-d-aspartate receptor (NMDAR) subunits in rat brain. Forty male rats were equally divided into four groups. The first group was used as control, and the second group received ethanol. Acamprosate and acamprosate plus ethanol each day were administered to rats constituting the third and fourth groups for 21 days, respectively. Brain cortical and hippocampal samples were taken from the four groups after 21 days. Brain cortical lipid peroxidation (LP) levels and MMCA activity were higher in the alcohol group than in control, although glutathione peroxidase (GSH-Px), vitamin C, vitamin E and β-carotene values were lower in the alcohol group than in control. LP levels were further increased in the acamprosate and alcohol + acamprosate groups compared with the alcohol group. GSH-Px, vitamin A, vitamin C, vitamin E and β-carotene in the acamprosate and alcohol + acamprosate groups were further decreased compared with the alcohol group. Hippocampal NMDAR 2A and 2B subunit concentrations were lower in the alcohol group than in control, although they were increased by acamprosate and alcohol + acamprosate. Brain cortical MMCA activity was higher in the acamprosate group than in the alcohol-treated rats, although its activity was lower in the alcohol + acamprosate group than in the acamprosate group. Brain cortical reduced glutathione levels were not found to be statistically different in any of the groups. Oxidative stress has been proposed to explain the biological side effects of experimental alcohol intake. Acamprosate and alcohol-induced oxidative stress decreased brain antioxidant vitamins in the alcoholic rats. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Acamprosate Modulates Alcohol-Induced Hippocampal NMDA Receptors and Brain Microsomal Ca2+-ATPase but Induces Oxidative Stress in Rat

Loading next page...
 
/lp/springer_journal/acamprosate-modulates-alcohol-induced-hippocampal-nmda-receptors-and-CoK0P2D0Or
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-010-9305-y
Publisher site
See Article on Publisher Site

Abstract

We investigated the effects of acamprosate on alcohol-induced oxidative toxicity, microsomal membrane Ca2+-ATPase (MMCA) activity and N-methyl-d-aspartate receptor (NMDAR) subunits in rat brain. Forty male rats were equally divided into four groups. The first group was used as control, and the second group received ethanol. Acamprosate and acamprosate plus ethanol each day were administered to rats constituting the third and fourth groups for 21 days, respectively. Brain cortical and hippocampal samples were taken from the four groups after 21 days. Brain cortical lipid peroxidation (LP) levels and MMCA activity were higher in the alcohol group than in control, although glutathione peroxidase (GSH-Px), vitamin C, vitamin E and β-carotene values were lower in the alcohol group than in control. LP levels were further increased in the acamprosate and alcohol + acamprosate groups compared with the alcohol group. GSH-Px, vitamin A, vitamin C, vitamin E and β-carotene in the acamprosate and alcohol + acamprosate groups were further decreased compared with the alcohol group. Hippocampal NMDAR 2A and 2B subunit concentrations were lower in the alcohol group than in control, although they were increased by acamprosate and alcohol + acamprosate. Brain cortical MMCA activity was higher in the acamprosate group than in the alcohol-treated rats, although its activity was lower in the alcohol + acamprosate group than in the acamprosate group. Brain cortical reduced glutathione levels were not found to be statistically different in any of the groups. Oxidative stress has been proposed to explain the biological side effects of experimental alcohol intake. Acamprosate and alcohol-induced oxidative stress decreased brain antioxidant vitamins in the alcoholic rats.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Sep 25, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off