AC conduction mechanism of the zinc potassium diphosphate

AC conduction mechanism of the zinc potassium diphosphate Zinc potassium pyrophosphate K2ZnP2O7 was synthesized using the conventional solid-state reaction. X-ray powder diffraction analysis proves the formation of a pure phase which crystallizes in the tetragonal system. The electrical conductivity and modulus characteristics of the system have been investigated in the temperature and the frequency range 614–718 K and 200 Hz–1 MHz, respectively, by means of impedance spectroscopy. The alternating current (AC) conductivity for grain contribution follows the universal Jonscher’s power law. The frequency exponent s is temperature independent and equal to 0.8. The QMT model was proposed to be the most suitable model to characterize the electrical conduction mechanism in the titled sample. Dielectric data were analyzed using complex electrical modulus M* at various temperatures. The bulk relaxation time was found from the peaks position of the above spectra and the thermodynamic parameters were also found using the Eyring theory. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ionics Springer Journals

AC conduction mechanism of the zinc potassium diphosphate

Loading next page...
 
/lp/springer_journal/ac-conduction-mechanism-of-the-zinc-potassium-diphosphate-vMcMtUjtK2
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Chemistry; Electrochemistry; Renewable and Green Energy; Optical and Electronic Materials; Condensed Matter Physics; Energy Storage
ISSN
0947-7047
eISSN
1862-0760
D.O.I.
10.1007/s11581-017-2070-5
Publisher site
See Article on Publisher Site

Abstract

Zinc potassium pyrophosphate K2ZnP2O7 was synthesized using the conventional solid-state reaction. X-ray powder diffraction analysis proves the formation of a pure phase which crystallizes in the tetragonal system. The electrical conductivity and modulus characteristics of the system have been investigated in the temperature and the frequency range 614–718 K and 200 Hz–1 MHz, respectively, by means of impedance spectroscopy. The alternating current (AC) conductivity for grain contribution follows the universal Jonscher’s power law. The frequency exponent s is temperature independent and equal to 0.8. The QMT model was proposed to be the most suitable model to characterize the electrical conduction mechanism in the titled sample. Dielectric data were analyzed using complex electrical modulus M* at various temperatures. The bulk relaxation time was found from the peaks position of the above spectra and the thermodynamic parameters were also found using the Eyring theory.

Journal

IonicsSpringer Journals

Published: Mar 24, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off