Abundance and diversity of anammox bacteria in a mainstream municipal wastewater treatment plant

Abundance and diversity of anammox bacteria in a mainstream municipal wastewater treatment plant Among the factors that obstruct the application of anammox-based technology for nitrogen removal from mainstream municipal wastewater is the water’s high organic loads. We hypothesized that some anammox species can adapt and grow in mainstream wastewater in which a minimal temperature of 13–15 °C is maintained. Using the AMX368F and AMX820R PCR-primers, anammox bacteria were detected in influent wastewater (COD/N ratio > 13) and in the anaerobic, anoxic, and aerobic chambers of a full-scale municipal wastewater treatment plant, reaching 107 copies/g VSS of the16S rRNA gene. Furthermore, anammox activity was demonstrated by 15N-isotopic tracing. The DNA sequences of clones randomly selected from a clone library were mainly clustered with Candidatus Brocadia flugida in addition to Ca. Brocadia sinica, Ca. Jettenia asiatica, and Ca. Anammoxoglobus propionicus. However, Ca. Brocadia was the only genus detected by high-throughput next-generation sequencing and denaturing gradient gel electrophoresis. The nitrite producers, ammonia-oxidizing archaea and bacteria, were both detected in the influent wastewater and the other chambers, while the nitrite consumers, Nitrospira nitrite oxidizers and the nirS-type denitrifiers, dominated all chambers. The results indicate the occurrence and potential activity of anammox bacteria in mainstream wastewater under certain conditions (proper temperature). The dominance of Brocadia flugida and Anammoxoglobus propionicus suggests a role for volatile fatty acids in selecting the anammox community in wastewater. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Microbiology and Biotechnology Springer Journals

Abundance and diversity of anammox bacteria in a mainstream municipal wastewater treatment plant

Loading next page...
 
/lp/springer_journal/abundance-and-diversity-of-anammox-bacteria-in-a-mainstream-municipal-CgNBoLHhM1
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Life Sciences; Microbiology; Microbial Genetics and Genomics; Biotechnology
ISSN
0175-7598
eISSN
1432-0614
D.O.I.
10.1007/s00253-018-9126-y
Publisher site
See Article on Publisher Site

Abstract

Among the factors that obstruct the application of anammox-based technology for nitrogen removal from mainstream municipal wastewater is the water’s high organic loads. We hypothesized that some anammox species can adapt and grow in mainstream wastewater in which a minimal temperature of 13–15 °C is maintained. Using the AMX368F and AMX820R PCR-primers, anammox bacteria were detected in influent wastewater (COD/N ratio > 13) and in the anaerobic, anoxic, and aerobic chambers of a full-scale municipal wastewater treatment plant, reaching 107 copies/g VSS of the16S rRNA gene. Furthermore, anammox activity was demonstrated by 15N-isotopic tracing. The DNA sequences of clones randomly selected from a clone library were mainly clustered with Candidatus Brocadia flugida in addition to Ca. Brocadia sinica, Ca. Jettenia asiatica, and Ca. Anammoxoglobus propionicus. However, Ca. Brocadia was the only genus detected by high-throughput next-generation sequencing and denaturing gradient gel electrophoresis. The nitrite producers, ammonia-oxidizing archaea and bacteria, were both detected in the influent wastewater and the other chambers, while the nitrite consumers, Nitrospira nitrite oxidizers and the nirS-type denitrifiers, dominated all chambers. The results indicate the occurrence and potential activity of anammox bacteria in mainstream wastewater under certain conditions (proper temperature). The dominance of Brocadia flugida and Anammoxoglobus propionicus suggests a role for volatile fatty acids in selecting the anammox community in wastewater.

Journal

Applied Microbiology and BiotechnologySpringer Journals

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off